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1. Problem description 
 
In order to set measurable environmental goals, regulatory agencies are increasingly defining 

environmental ‘improvement’ relative to some baseline condition. For example, phosphorous loads to 

the Gippsland Lakes are required to be 40% of their ‘current’ levels by the year 2005. The baseline 

load for this determination has been estimated using 1995-97 historical data. The setting of targets in 

this manner automatically leads us to consider ratios of random variables. From a statistical 

perspective, the analysis of ratios of random variables has difficulties – for example non-existent 

moments. It is not possible to derive generic results that will allow us to make inference about a target 

which is defined in terms of a ratio of some environmental parameter measured at different places or 

times. To do so would require detailed information about the distributional properties of the particular 

parameter(s) of interest. While general observations are possible for water quality variables (eg. non-

negative, positive skewed) it would be unwise to assume a particular distributional form (eg. log-

normal) since violations in practice would not be uncommon. An alternative approach has been 

adopted in this technical note which utilises some approximate results for the ratio of random variables 

which hold true irrespective of the underlying distribution of values from which the data have been 

sampled. 

 

2. Mathematical Considerations 
 
Let the random variable of interest be denoted Y (eg. total nutrient load to a system). Subscripts on Y 

will be used to differentiate between different epochs. Thus Y  will denote a baseline or reference 

value and Y  the corresponding value at some future time, T. 
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In deciding whether or not a particular reduction target has been met, we need to consider the ratio 
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τ = . Note, that both the numerator and denominator of this expression are treated as random 

variables1.  We denote by τ̂  an estimator of τ  where  ˆ T
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τ =  and lowercase y’s indicate sample 

estimates of the corresponding true parameter. 

 

Using a first-order Taylor series expansion it is possible to derive the following approximations: 

 

   

                                                 
1 An alternative and simpler approach is to treat Y  as fixed or measured without error. This may be appropriate whereY  

cannot be estimated from past data and/or the regulatory agency establishes Y by decree – eg. as an ‘aspirational’ target.  

B B

B

 



 [ ] [ ] [ ]2 3

1ˆ ,T
T B B

B B B

Y YCov Y Y Var Y
Y Y Y

τΕ − + T   (2.1) 

   
  

 [ ] [ ] [ ] [ ]2

2 2

2 ,
ˆ T B TT

B T B T B

Var Y Var Y Cov Y YYVar
Y Y Y Y Y

τ B  
+ −  

   
  (2.2) 

 
  

Equations (2.1) and (2.2) can be simplified if it can be assumed that Y  and Y  are independent. In 
this case we have: 
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Equation (2.3) can be rewritten as  
 
   
 [ ] ( )2ˆ 1 BCVτ τΕ +    (2.5) 

 

where  is the coefficient of variation (defined here as the standard deviation relative to Y) of the 

baseline value. It is evident from equation (2.5) that the approximation overestimates the true ratio. 

Furthermore, the quantity CV  is unlikely to be known. To overcome this we consider the related 

quantity 
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We thus obtain: 
 
 [ ] ( )2ˆ 1 TCVτ τ′Ε +    (2.6) 

and 
 
 
 [ ] ( )2 2ˆ B TVar CV CVτ τ′ ′ + 2

                                                

   (2.7) 

 
2 Note that if we were looking for a 40% reduction say, then τ would be equal to 0.6 and thus τ’ would be equal to 1/0.6 = 1.67. 



3. Hypothesis Testing 
 
The assessment of whether or not a target has been attained can be conducted within a conventional 
hypothesis testing framework3. Thus, we are interested in testing: 
 
   0 0:H τ θ′ =  
versus 
   1 1:H τ θ′ =   where  1 0θ θ>  . 
 
For example, a test of a minimum 40% reduction against a null hypothesis of no change is equivalent 
to: 
 
   0 : 1H τ ′ =  

   1 : 1.H 67τ ′ ≥  
 

Define the test statistic:  
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   and define a critical value, τ ∗  for an α-level test 

as : 
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Now, the power of the test is defined as: 

 

 1ˆ 1P τ τ τ θ β∗′ ′ > = = −     (2.9) 

where β is the Type II error rate. 

 
From equation (2.9) we obtain 
 

 
( ) [ ] ( )

[ ]

2 2
0 1 1ˆ1 1

ˆ
T TCV z Var CV

z
Var

α
β

θ τ θ

τ
− ′+ + − +

=
′

  (2.10) 

  

and by substituting equation (2.7) into equation (2.10) 
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Equation (2.11) can be simplified if it can be assumed that the relative variation (coefficient of 
variation) in the baseline and future estimates are equal. Proceeding on this assumption we have 
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3 The technical development of the hypothesis test is predicated on the assumption that the test statistic is normally distributed. 
To a first approximation this is not unreasonable and has been shown to hold in preliminary assessments. 



Equation (2.12) defines a quadratic in CV  which has solutions: T

= −
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with 

 ( )11a θ= −  

 ( )1 12b z zβ αθ −−  

and ( )11c b θ= = −  

 

Generally, there will only be one solution to (2.12) which makes sense (eg. second solution is 

negative). 

 

Equation (2.12) can be used to obtain plots of the coefficient of variation against power for various 

levels of significance, α. Examples of such plots are provided below. 

 

Example 

Suppose we are interested in establishing whether or not a 40% nutrient load reduction has been 

achieved using a test with a 5% level of significance. Furthermore, we require that the statistical test 

has power of at least 80% (ie. the test will correctly reject the null hypothesis of no difference with 0.8 

probability when in fact the target has been attained).  

By referring to the blue curve of Figure 3, it can be seen that this requirement will be met provided the 

coefficient of variation for the load estimate is no more than about 0.13 (ie. the standard deviation of 

the estimated load is no bigger than 13% of the load itself).  
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Figure 1   CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 20% reduction. 
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Figure 2  CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 33% reduction. 
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Figure 3  CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 40% reduction. 
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Figure 4  CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 50% reduction. 
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Figure 5  CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 60% reduction. 
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Figure 6  CV – Power curves for testing a hypothesis of no change against an alternative 
hypothesis of a 80% reduction. 

 


	A Statistical Method for Assessing Compliance with Nutrient Reduction Targets
	
	Problem description
	Mathematical Considerations
	Hypothesis Testing



