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1. EXECUTIVE SUMMARY AND RECOMMENDATIONS 

This report summarises the results of the final set of investigations, additional studies, and software 

fixes prior to the release of ssdtools 2.0 and companion on-line implementation, 

shinyssdtools. It is intended that the release of ssdtools 2.0 will coincide with its adoption by 

Australian, New Zealand, and Canadian jurisdictions as the recommended software tool for 

establishing default guideline values (DGVs) for concentrations of contaminants in natural aquatic 

systems. This signifies the achievement the collaborative project’s over-riding objective of 

harmonising the statistical and computational basis of guideline value derivation across all three 

jurisdictions. In the context of SSD modelling, we believe this is the first time such collaboration and 

coordination among non-EU countries has occurred. 

Over the past 4.5 years of this project, the core development team has made numerous changes, 

enhancements, and updates to the ssdtools software resulting in a tool that is easy to use, 

incorporates the latest developments in SSD modelling, and is computationally stable and efficient. 

This has required many decisions to be made along the way and while we are confident that those 

decisions have been based on sound science supported with well documented study results, future 

decisions regarding technical, computational, and functional issues will be made by a newly 

established Technical Advisory Group (TAG) whose membership introduces a wider range of interests 

and representation across the three jurisdictions. 

A listing and brief description of all 8 tasks comprising this final phase of the collaborative project are 
listed in the table below. 
 

Category Task ID Description 

Software (S) 

S1 
Explore and implement computationally efficient 
methods for obtaining confidence intervals for 
model-averaged HCx values. 

S2 
Output customisation: improvements to plot 
formatting, options, report production. 

S3 Resolve the hc() - hp() inconsistency in ssdtools.  

S4 
Documentation updates: new and revised help 
material, vignettes, new feature summary. 

S5 
Investigations into stability issues with 
distribution fitting and confirmation of final set of 
stable distributions. 

S6 Fix hc() and hp() documentation 

Mathematical/Statistical 
(M) 

M1 
Integrity checks; review decision rules for 
minimum data requirements; other misc. 

M2 
Investigate and resolve convergence issues with 
lnorm-lnorm mixture distribution. 
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Recommendations 

Recommendation #1 

The CRAN-version of ssdtools be updated to incorporate the new functions and associated 

uniroot procedures for model averaged HCx and HPx estimation that consider the model set as a 

joint probability distribution with a mixing proportion based on AIC model weights,  thereby 

resolving the hc()-hp() inconsistency identified in Task S3. These functions include: 

ssd_qmulti(), ssd_pmulti(),ssd_rmulti(); ssd_dmulti(). 

Recommendation #2 

Subsequent releases of ssdtools use the weighted_sample method to determine confidence 

intervals for the HCx estimated by the procedures specified in Recommendation #1. 

Recommendation #3 

To ensure reliable convergence when fitting a lognormal mixture model the minimum bound for the 

mixing proportion (pmix) should be set at 3/N where N is the sample size of the input data.  

Recommendation #4 

The final set of ‘default’ distributions remains unchanged and consists of:   

 Gamma  

 Log-Gumbel 

 Log-logistic 

 Lognormal 

 Lognormal_lognormal 

 Weibull 

And the distributions utilised in any analysis from this default set be subject to minimum sample size 

requirements, according to recommendation #5 below. 

Recommendation #5 

The required minimum sample sizes are: 7 for two parameter distributions (Gamma, Log-Gumbel, 

Log-logistic, Lognormal and Weibull); 10 for three parameter distributions (Burr III, not a default 

distribution), and 16 for five parameter distributions (lognormal-lognormal, log-logistic – log-

logistic). Adoption of these recommendations for use with ssd_fit_bcanz()function will require 

endorsement by the technical advisory group as this needs to be harmonised with the revised advice 

in Warne et al. (2018), and also be informed by  CCME (2007). Given this recommendation 

represents a slight departure from previous sample-size advice, we further recommend that, if 

adopted, the revised sample-size requirements be applied prospectively and not retrospectively. 
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Recommendation #6 

The preferred minimum sample sizes are: 11 for two parameter distributions (Gamma, Log-Gumbel, 

Log-logistic, Lognormal and Weibull); 16 for three parameter distributions (Burr III, not a default 

distribution), and 26 for five parameter distributions (lognormal-lognormal, log-logistic – log-

logistic). As for recommendation #5, this will require endorsement by the technical advisory group. 

 

 

Recommendation #7 

Decisions regarding censoring options to be made available in ssdtools should be referred to the 

technical advisory group. 
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2. INTRODUCTION 

This final report is provided in fulfilment of the reporting requirements specified in 

Commonwealth Contract TM_2023_0499 between the Australian Government and Environmetrics 

Australia P/L and Contract ATM_2023_0469 between the Australian Government and the Australian 

Institute of Marine Science. 

Contracts TM_2023_0499 and ATM_2023_0469 are for the provision of consultancy services 

to assist with the resolution and implementation of critical remaining technical details required to 

ensure the species sensitivity distribution (SSD) statistical modelling method based on the ssdtools R 

package and associated Shiny App is suitable for the generation of toxicant default guideline values 

(DGVs) for the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. 

This review of technical issues builds upon and formalises the collaborative research efforts 

of the following individuals and organisations: Professor David Fox (Environmetrics Australia and the 

University of Melbourne); Dr. Rebecca Fisher (Australian Institute of Marine Science and University of 

Western Australia Oceans Institute and School of Plant Biology); Dr. Carl Schwarz (StatMathComp 

Consulting, Vancouver, BC, Canada, now retired); and Dr. Joe Thorley (Poisson Consulting, Nelson, BC, 

Canada).  

The following individuals and organisations have been closely involved and instrumental in the 

preparatory technical work leading up to this Australian-Canadian collaboration: Dr. Rick van Dam 

(WQadvice); Dr. Graeme Batley (CSIRO Land and Water); Dr. Angeline Tillmanns (British Columbia 

Ministry of Environment and Climate Change Strategy); and Doug Spry and Kathleen McTavish 

(Environment and Climate Change Canada, Gatineau, Quebec, Canada).  

Yulia Cuthbertson, Tony Bigwood and Michael Antenucci from the Department of Climate 

Change, Energy, the Environment and Water have, and continue to provide administrative and 

contractual support. 

 

 

 

 

 

 

Professor David Fox (Environmetrics Australia P/L.) 
Dr. Rebecca Fisher (Australian Institute of Marine Science) 

Dr. Joe Thorley (Poisson Consulting Ltd.) 
19 April 2024 
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3. BACKGROUND 

The genesis of this 4.5 yr collaborative research effort dates to a workshop held between March 27–

29, 2019 at the Australian Institute of Marine Science (AIMS) in Townsville, Queensland, to discuss key 

issues associated with the derivation of water quality guideline values (GVs). The workshop was 

attended by 14 national experts covering the fields of Ecotoxicology, Chemistry, statistical science, 

biostatistics and ecological modelling and aquatic ecology. The workshop arose following discussions 

in 2018 among some of the workshop attendees on potential improvements to GV derivation methods 

in use at the time, and an associated presentation at the SETAC Europe conference in Rome, in May 

2018. The workshop report made 15 recommendations with respect to the need for more robust 

statistical techniques, investigations into ‘new’ modes of SSD modelling and analysis, software 

development, minimum data requirements, candidate models, and opportunities for collaboration 

(Fisher et al. 2019). 

Later that year, Professor David Fox attended a three-day workshop held in the offices of Ministry of 

Environment and Climate Change Strategy, Victoria, BC, Canada (November 25-27, 2019) (Phase I). 

The workshop was attended by scientists, technical experts, and policymakers from Australia and 

Canada with the primary aim of identifying R&D priorities associated with methodologies for deriving 

water quality guideline values. All parties expressed a strong desire to contemplate a collaborative 

framework to facilitate these R&D efforts with the goal of harmonising methodological and 

computational approaches across jurisdictions – particularly with respect to the use of R, ssdtools, 

model-averaged SSDs, and shinyssdtools. 

Discussions between Australian-New Zealand and Canadian jurisdictions continued throughout 2020 

culminating in the awarding of Commonwealth contracts to Environmetrics Australia and AIMS in April 

2021 to undertake the first tranche of work . This was conducted in collaboration with Canadian 

researchers to improve the statistical underpinnings and functionalities of the R package ssdtools 

and its associated shiny app (Phase II). Specific tasks included investigations into stability issues with 

the Burr III distribution, identification of benchmark datasets, refinement of statistical mixture models, 

identification of alternatives to bootstrapping for CI and HCx estimation, and considerations of the 

default distribution set. A comprehensive summary of this work was provided in the Project report 

(Fox et al. 2021) which recommended that the Australian-New Zealand and Canadian jurisdictions 

formally adopt the R package ssdtools (and its on-line implementation shinysssdtools) as the 

default software tools for fitting SSDs to toxicity data for the purpose of deriving ‘safe’ or ‘protective’ 

concentrations of chemicals in natural aquatic environments. Further investigations into the default 

distribution set, inconsistencies between Burrlioz and ssdtools output, numerical instabilities, 

and convergence issues were recommended.  

Further contracts between the Commonwealth (represented by the Department of Climate Change, 

Energy, the Environment and Water) and Environmetrics Australia and AIMS were let in October 2023 

(Phase III) to complete all outstanding investigations prior to formal adoption by the three jurisdictions 

and a major upgrade of the ssdtools package. The Phase III project comprised 8 Tasks broadly 

classified as ‘Software Issues’ and ‘Mathematical/Statistical Issues’. This Final Report provides details 

of those investigations and a synthesis of all work undertaken. 
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4. Summary of Phase III investigations. 

Table 1 summarises all Phase III investigations, including a description and the outcome. 

Table 1. Summary of preliminary investigations into issues associated with fitting Burr distributions and related activities 

Task 
ID 

Issue explored Description Actions/Outcome 

S1 Implement 
weighted bootstrap 
sample method for 
estimating CI 

The current approach adopted in ssdtools for 

calculating model averaged confidence intervals 
based on a simple weighted arithmetic mean 
yields coverage values that fall substantially 
short of their notional 95% level, even at quite 
high samples sizes. A sample proportional to the 
weight of each distribution can be drawn such 
that the total bootstrap samples equals the 
number required. This will substantially speed up 
bootstrap based CI estimation, whilst still 
yielding a robust result. 

Comparison of alternative CI estimation strategies 
showed that the weighted sample method 
previously identified, along with a newly developed 
method based on the functions and procedures 
implemented to resolve the hc()-hp() 

inconsistency (see S3) both result in similar CI 
values, with much better coverage than the 
weighted arithmetic mean currently implemented in 
ssdtools. The weighted sample method is faster and 
is therefore recommended for adoption. 

S2 Output 
customisation 

Identify all the 'tweaks' to plot formatting (e.g. 
HCx/PCx, dashed lines at HCx-FA,font-sizes), 
labelling (toxicant name, units, data point label 
font/colour), axes scaling (set min/max, and 
ticks), statistical information reporting levels 
(e.g. x values for HCx), report generation options 
and formats (e.g. produce a PDF with user-
specified elements), colour schemes etc. that 
would enhance user experience. 

These customisations have been made, including a 
new draft Shiny App and pdf report suitable for use 
in DGV derivation. The French translations are being 
incorporated so that it can be made available in 
Canada. 

S3 Inconsistency 
between model 
averaged ssd_hc() 
and ssd_hp() 

As it currently stands, if you use the ssd_hc() 

function to estimate an HCx and then use that 
HCx as the argument to the ssd_hp() function, 

the value returned is not x. This is an artefact of 
the way ssdtools currently computes the HCx 

ssdtools was updated to incorporate the 

functions and associated uniroot procedures for 

HCx estimation: ssd_qmulti(), 
ssd_pmulti(),ssd_rmulti(); 

ssd_dmulti() thereby resolving the hc()-

hp() inconsistency. 

 

S4 Update 
documentation 

Add new material to outline and explain new 
features. Update vignette. 

Additional documentation has been added to the 
ssdtools github website, including updated and 

detailed vignettes. 

S5 Review 'stable' and 
'unstable' 
distributions 

Should the invpareto be among the stable 
distributions? Note also other tasks associated 
with stability. The final set of "stable" 
distributions needs discussion and resolution. 

All distributions showing instability were examined. 
The inverse Pareto will not be included based on 
theoretical grounds. The final set of distributions 
remains as originally identified. 

S6 Fix documentation 
for ssd_hc() and 
ssd_hp() 

ssd_hc() and ssd_hp() are missing 

descriptions of arguments. 

This has now been described in detail. 

M1 Integrity checks Review and update/modify where necessary 
decision rules for minimum data requirements 
with and without mixtures; inclusion/exclusion 
rules based on data attributes (e.g. left and right 
censoring) 

A review of the minimum data requirements was 
undertaken, with the recommendation that this 
should be set at n≥3k+1, where k is the number of 
estimated parameters. The preferred minimum 
should be set at n≥5k+1. 

M2 Convergence issues 
with lnorm-lnorm 

Currently, to ensure reasonable behaviour 
ssdtools has lowered the pboot tolerance 

from 0.99 to 0.95 for the bcanz function to 

ensure the lnorm mixture is reliably included, 
because this does show instances of instability (a 
small percentage of failed bootstrap samples). 
This has not yet been investigated. In addition, 
we need to decide if it is necessary to implement 
a minimum sample size cut-off criterion for 
inclusion of this mixture. 

Convergence in the lnorm-lnorm mixture were 
related to difficulty in estimating the mixing 
parameter (pmix) at the bounds of 0 and 1 on the 
logit scale. The ssdtools code was refactored to 

estimate pmix on its bounded natural 0-1 scale, 

which improved convergence by 20%. Issues remain 
with estimation of bounds at 0. A pragmatic solution 
is to set the bound at 3/N, which has been shown to 
resolve most convergence issues. 
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4.1 DETAILED TASK SUMMARIES AND RESULTS 

4.1.1 Task S1: Weighted bootstrap estimation for HCx confidence intervals 

Tasks S1 (HCx interval estimation strategies evaluation) and S3 (HCx – FA inconsistency) are related. 

The stated aim of Task S1 was to address inadequacies (both mathematical and computational) of the 

current ssdtools methodology for obtaining confidence intervals for an HCx. As originally conceived, 

Task S1 would evaluate a ‘weighted samples` method for this purpose. While computationally 

efficient, subsequent investigations revealed that this approach may yield biased estimates of an HCx. 

Accordingly, the scope of Task S1 was broadened to investigate and compare several alternative 

strategies for bootstrap estimation, particularly considering modifications to ssdtools to resolve the 

hc()-hp() inversion issues (section 4.1.2) for model average distributions. Here we outline pseudo 

code for the various possible estimation strategies that could be used for obtaining model-averaged 

HCx estimates. Because of the mathematical complexity and analytical intractability, evaluation of all 

methods could only be undertaken using computer simulations, and the adopted methodology is 

outlined below. 

Bootstrapping methods 

The ssdtools bootwtmerge branch https://github.com/open-AIMS/ssdtools/tree/bootwtmerge 

(8853b3b) was expanded to include four candidate averaging methods for estimating HC confidence 

interval: 

averaging_method == "weighted_sample" 

Method weighted_sample parametrically bootstraps from each of the set of distributions 

individually, taking a weighted sample (number of samples proportional to the relative weight of the 

distribution) from each, and combining these into a pooled bootstrap sample for estimation of CIs. 

This is the method that was compared to the original averaging method (see below) following Phase 

II of the ssdtools adoption project that indicated there was very poor coverage for the currently 

adopted averaging method in ssdtools. 

PSEUDO CODE: 

- For each distribution in the fitdists object, the proportional number of bootstrap samples to 

draw (nboot_vals) is found using round(nboot * weight), where nboot is the total 

number of bootstrap samples and weight are the AICc based model weights for each 

distribution based on the original ssd_fitdist fit. 

- For each of the nboot_vals for each distribution, a random sample of size N is drawn (the 

total number of original data points included in the original SSD fit) based on the estimated 

parameters from the original data for that distribution. 

- The random sample is re-fitted using that distribution, and HCx is estimated from the re-fitted 

bootstrap fit. 

- The HCx estimates for all nboot_vals for each distribution are then pooled across all 

distributions, and quantile is used to determine the lower and upper confidence bounds for 

this pooled weighted bootstrap sample of HCx values. 
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averaging_method == "uniroot" 

Method uniroot parametrically bootstraps from the complete set of distributions, by taking nboot 

bootstrap samples of size N from each distribution (based on the original estimated parameters), 

refitting each distribution independently, and using uniroot to estimate a joint HCx value, based on 

the original AICc based model weights. 

PSEUDO CODE: 

For each distribution in the fitdists object a new sample of size N (the total number of original data 

points included in the original SSD fit) is drawn, based on the original parameter estimates. 

- Each distribution is re-fitted to the new bootstrap sample (independently). 

Based on the new parameter estimates for each distribution at each iteration of nboot, uniroot is 

used to estimate the joint HCx value, using the original AICc model weights. 

This is repeated a total of nboot times (total number of bootstrap samples), and quantile is used to 

determine the lower and upper confidence bounds from the resulting sample of HCx values. 

 

averaging_method == "arithmetic" || averaging_method == "geometric" 

Method arithmetic is the currently implemented bootstrapping method in the CRAN version of 

ssdtools. This method takes a parametric bootstrap sample for each distribution separately, finds 

upper and lower confidence intervals independently and calculates a weighted arithmetic mean. 

Method geometric is equivalent to the arithmetic method, but uses a weighted geometric mean 

instead, as this is likely more appropriate given the skewed distributions represented by SSDs. 

PSEUDO CODE: 

For each distribution in the fitdists object a new sample of size N (the total number of original data 

points included in the original SSD fit) is drawn, based on the original parameter estimates. 

- Each distribution is re-fitted to the new bootstrap sample (independently). 

Based on the new parameter estimates for each distribution at each iteration of nboot, the HCx value 

is estimated. 

This is repeated a total of nboot times (total number of bootstrap samples), and quantile is used to 

determine the lower and upper confidence bounds from the resulting sample of HCx values for each 

distribution independently. 

- A weighted mean (arithmetic or geometric) is then applied to the upper and lower confidence 

intervals, to obtain model averaged confidence estimates. 

The r_multi method 

A more theoretically correct way of obtaining ci and se values is to consider the model average set as 

a mixture distribution (see above, and the model averaging vignette, Appendix I). This method was 

implemented directly into the development branch of ssdtools. When we consider the model set 

as a mixture distribution, bootstrapping is achieved by resampling from the model set according to 

the AICc based model weights. A method for sampling from mixture distributions has been 
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implemented in ssdtools, via the function ssd_rmulti() which will generate random samples 

from a mixture of any combination of distributions currently implemented in ssdtools. Setting 

multi_ci = TRUE in the ssd_hc() call will ensure that bootstrap samples are drawn from a mixture 

distribution, instead of individual candidate distributions.  

As mentioned above, when bootstrapping from the mixture distribution, the question arises whether 

the model weights should be re-estimated for every bootstrap sample or fixed at the values estimated 

from the models fitted to the original sample of toxicity data. Using simulation studies, we explored 

the coverage and bias of ci values obtained with and without fixing the distribution weights, and 

results indicate little difference. 

If treating the distributions as a single mixture distribution when calculating model average confidence 

intervals (i.e. with multi_ci = TRUE), then setting weighted = FALSE specifies to use the original 

model weights. Setting weighted = TRUE will result in bootstrapping that will re-estimate weights 

for each bootstrap sample. 

Simulation study methodology 

A series of simulation studies (see ‘Datasets’ below) was used to test the following (revised) CI 

estimation strategies. 

“weighted_sample”, "uniroot", "arithmetic" || averaging_method = "geometric" 

(see section 4.1.2.1) as implemented on the 'bootwtmerge' branch on open-aims: 

remotes::install_github('open-aims/ssdtools', ref = 'bootwtmerge', 

dependencies = TRUE)  

and methods rmulti, and rmulti_fixed as implemented on the a development branch of ssdtools 

on bcgov: remotes::install_github('bcgov/ssdtools@b903b3d', dependencies = 

TRUE) 

The bcgov/ssdtools@b903b3d version was also used to run the original method (implemented in 

the CRAN version 1.0.6 of ssdtools) and is equivalent to the arithmetic method from the 

bootwtmerge branch on open-aims. This was implemented to ensure there was consistency across 

the two versions of ssdtools. 

Both methods rmulti and rmulti_fixed undertake bootstrapping using the new internal function 

ssd_rmulti() that generates random data from the single mixture cdf constructed from the 

candidate distributions and whose weights are determined from the model-averaged fits. This same 

distribution is re-fitted to the generated data using both rmulti and rmulti_fixed. The 

difference between the two strategies is that while rmulti re-estimates the AICc weights for each 

bootstrap sample rmulti_fixed fixes the weights to those used in the cdf from which the data were 

generated.  

Note that in the release version ssdtools 2.0, the averaging method will be controlled by the 

ci_method argument in ssdtools, taking a character vector indicating the method.  

The four possible values are multi_free (equivalent to rmulti) and multi_fixed (equivalent to 

rmulti_fixed) as well as weighted_arithmetic for the method used in the previous versions 
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and weighted_samples for the new default method which as described above takes a sample 

from each distribution proportional to the distributions weight.. 

Datasets 

Three different simulations were undertaken – one each for simulated datasets generated from the 

following ‘parent’ distributions: 

A. Burr III distribution 

The Burr III was chosen as it is currently not in the candidate model set and is the only three-

parameter, univariate distribution in ssdtools. Eight different Burr III datasets were simulated, 

based on those from the ssddata package that showed successful convergence of the Burr III using 

Burrlioz. 

B. Lognormal-lognormal mixture distribution 

This distribution was included as it provides an indication of how well the model averaging can 

represent data drawn from a mixture distribution. This distribution was not included in the candidate 

set during simulations due to stability issues that had yet to be resolved (See 4.1.8). A total of seven 

different datasets were simulated from lognormal-lognormal fits to the ccme datasets available in the 

ssddata package. 

C. log-logistic distribution 

This distribution was used to assess how well the different methods identified above perform for data 

simulated from a stable distribution and can therefore be included in the candidate set. Seven log-

logistic datasets were simulated from log-logistic fits to the ccme datasets contained in the ssddata 

package. 

200 data sets for each of the sample sizes n = 6, 8, 16, 24, 32 were generated from distributions A, B, 

and C above. An SSD comprised of a set of 4 known stable distributions (gamma, log-gumbel, log-

logistic, and lognormal) was fitted to each of the synthetic dataset generated from all dataset x 

sample_size x distribution combinations. 

All methods were tested using 1,000 bootstrap samples, for all simulated datasets, and for HC values 

of 1, 5, 10 and 20%  resulting in a total of 527, 960 HC estimates from 131,990 fitted ssd_fit_dist 

objects. 

It is evident from the description of the simulation methodology that this was both a complex and 

large undertaking. Notwithstanding the sheer number of datasets, iterations, and multiple 

computations, the evaluation of the results is based on considerations of confidence interval bias, 

coverage, and width. 

Bias is a measure of the degree to which the estimated HCx consistently over- or under-estimates the 

true value. An unbiased estimator is one for which the average bias is zero. We use the bias criterion 

as a first-order screening consideration. That is, a method for which the magnitude of the average bias 

is unacceptably high will be eliminated from further consideration. 
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Coverage is defined as the proportion of bootstrap samples for which the computed confidence 

interval ‘captured’ the true HCx value. Thus, for a 95% confidence interval, we expect 95% of all 

bootstrap confidence intervals to contain the true HCx value. 

Width is simply the difference between the upper and lower limits of the confidence interval. 

Our criteria for determining what constitutes a ‘good’ methodology for CI estimation is one for which: 

- The magnitude of the average bias is close to zero; 

- The coverage for a (1 )100%  confidence interval is close to  1 100%  ; and 

- The width of the confidence interval is as small as possible. 

Simulation study results 

Bias1 

Overall, our results suggest (for this particular simulation scenario) that all HCx estimation methods 

are positively biased (i.e. the estimated HC value tends to be higher than the true HC value) for x = 1, 

5, 10, and 20 (Figure 1). Bias decreases rapidly with increasing sample size for all methods, highlighting 

the importance of obtaining the largest possible sample sizes in SSD modelling (Figure 1). Bias was 

always lowest for the rmulti methods (Figure 1) and on that basis, is the preferred approach for HCx 

point estimation. Note that full details for each simulation source dataset are shown in Appendix A. 

Coverage 

The picture with respect to coverage is less well-defined (Figure 2). Overall, the coverage of the 

weighted_sample and the two methods using the ssd_qmulti() and ssd_pmulti()functions 

(rmulti and rmulti_fixed)yield intervals whose coverage is closest to the nominal 95% (Figure 

2). However, this is not uniform across the 4 HCx levels considered (Figure 2). We see that the 

weighted_sample method provides superior coverage for the estimation of HC1 and HC5 with 

relatively small differences in coverage among all methods for the estimation of HC10 and HC20 (Figure 

2). 

The two averaging methods (arithmetic and geometric) are the worst in terms of coverage (Figure 

2). The CRAN version 1.0.6 of ssdtools uses arithmetic averaging which is why this investigation 

was required, and the results here confirm the need to replace this method with a superior approach. 

Fixing the AICc weights for the methods based on bootstrap samples taken from the candidate set as 

a mixture distribution had little effect on coverage, and these methods appear to yield very similar 

results (rmulti and rmulti_fixed, Figure 2). 

Note that full details for each simulation source dataset are shown in Appendix B. 

 

 

 

 
1 The uniroot method performed very poorly in terms of both coverage and bias and was removed from 

plotting so that the pattern across the remaining methods could be better observed. 
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Figure 1. Mean bias as a function of sample size (N = 6, 8, 16, 24, 32, and 40) across all datasets and simulation runs for 
each of three simulation scenarios (Burr III, log-logistic and lognormal-lognormal mixture distributions, plot columns). 
Bias was calculated as (estimated hazard concentration – true hazard concentration)/true HC. Four hazard concentration 
values were considered (1, 5, 10 and 20, plot rows). Fitted candidate distributions included 'gamma', 'lgumbel', 'llogis', 
and 'lnorm. 
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Figure 2. Mean coverage as a function of sample size (N = 6, 8, 16, 24, 32, and 40) across all datasets and simulation runs 
for each of three simulation scenarios (Burr III, log-logistic and lognormal-lognormal mixture distributions, plot 
columns). Coverage was calculated as the proportion of times the true HC fell within the 95% confidence interval. Four 
hazard concentration values were considered (1, 5, 10 and 20, plot rows). Fitted candidate distributions included 
'gamma', 'lgumbel', 'llogis', and 'lnorm. 

Width 

Confidence interval widths were computed for each of the 500 bootstrap samples, replicated 200 

times for each of the 8 data sets, across all sample sizes and for   ; 1,5,10,20xHC x  where the 

parent distribution was a Burr III distribution (Figure 3); a lognormal mixture distribution (Figure 4); 

and a log-logistic distribution (Figure 5). 

The most obvious, and striking feature of the plots of Figure 3, Figure 4 and Figure 5 is the almost 

identical average confidence interval widths over all combinations of datasets, parent distribution for 

simulated data, HCx values, and sample size. Thus, as a criterion for assessing the performance of 

different CI computational methods, confidence interval width can be ignored, leaving considerations 

of bias and coverage as screening criteria. 
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Figure 3. Confidence interval width (ucl-lcl) for 7 simulation datasets based on a Burr III distribution (plot rows) across a 
range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard concentration values of 1, 5, 10 and 20 (plot columns) for a 
range of different methods (see text). Each dataset was simulated 200 times, for each dataset, and a minimum of 1000 
bootstrap samples were used to estimate confidence intervals. Fitted candidate distributions included 'gamma', 
'lgumbel', 'llogis', and 'lnorm’. 
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Figure 4. Confidence interval width (ucl-lcl) for 6 simulation datasets based on a log-normal log-normal distribution (plot 
rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard concentration values of 1, 5, 10 and 20 (plot 
columns) for a range of different methods (see text). Each dataset was simulated 200 times, for each dataset, and a 
minimum of 500 bootstrap samples were used to estimate confidence intervals. Fitted candidate distributions included 
'gamma', 'lgumbel', 'llogis', and 'lnorm’. 
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Figure 5. Confidence interval width (ucl-lcl) for 7 simulation datasets based on a log-logistic distribution (plot rows) 
across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard concentration values of 1, 5, 10 and 20 (plot columns) 
for a range of different methods (see text). Each dataset was simulated 200 times, for each dataset, and a minimum of 
500 bootstrap samples were used to estimate confidence intervals. Fitted candidate distributions included 'gamma', 
'lgumbel', 'llogis', and 'lnorm’. 
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Method Assessment 

Our first-order consideration of bias ruled out the weighted_sample method for point estimation of 

the HCx. However, the weighted-sample method had good coverage properties and upon further 

benchmarking, was shown to be more than twice as fast as either the rmulti or rmulti_fixed 

methods (Figure 6). 

 

Figure 6. Time taken to undertake bootstrap sampling for each of the methods across a range of different bootstrap 

sample sizes (n_boot) and ssdtools implementation  optimized version (bcgov panel) and development version (open-
aims panel). Timing was undertaken using Dell Precision 7560, 11th Gen Intel® Core™ i9-11950H @ 2.6GHz and 32 GB 
RAM, running Microsoft Windows 10 Enterprise with an x64-based PC system. 

As remarked above, in terms of confidence interval width, there was negligible difference on average 

between the computational methods examined. What is now of interest is to compare the confidence 

limits obtained for both the weighted_sample and rmulti methods at an individual sample level. 

To facilitate this comparison we plotted separately, the upper CI limit from the weighted sample 

method against the upper CI limit for the rmulti method and the lower CI limit from the weighted 

sample method against the lower CI limit for the rmulti method (Figure 7). 

Upon closer inspection, we see that for any individual sample, the upper and lower confidence interval 

limit derived from either of the rmulti methods is in almost perfect agreement with the upper or 

lower confidence interval limit derived from the weighted_sample method and that this 

observation holds true across all three simulation datasets and all 4 HCx values (Figure 7).  

Together, these results suggest an effective HCx estimation strategy could be developed by integrating 

both approaches: (i) the unbiased point estimation of an HCx using the ssd_qmulti()function; and 

(ii) the rapid confidence interval estimation for that HCx using the weighted_sample method. 
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Figure 7. A comparison of the lower 2.5% (lcl) and upper 97.5% estimated bootstrap confidence intervals between the 
weighted_bootstrap and rmulti methods, across all three simulation datasets, for a range of HC values (1, 5, 10 and 
20%). 

4.1.2 Task S3: Inconsistency between model averaged ssd_hc() and ssd_hp() 

During the course of Phase II an anomaly was discovered relating to the manner in which ssdtools 

was computing a model-averaged HCx that violated the ‘inversion principle’. The inversion principle 

requires that, no matter how determined, an estimated HCx must satisfy the basic requirement that 

the estimated fraction of species affected at HCx is x. For HCx values obtained from a single cumulative 

distribution function (cdf), this property is guaranteed. However, in the case of an HCx derived from 

either a single mixture distribution or a model-averaged distribution, this requirement may not be 

met. Task S3 was designed to investigate this issue more fully and to provide a fix to the ssdtools 

code. 

Here we describe weighted averaging and explain why simple weighted averages are not appropriate 

for estimating the joint cdf of a weighted set of candidate SSDs. The explanation leans heavily on the 

analogy between a statistical mixture distribution and a weighted set of candidate distributions, which 

is discussed in more detail later. 
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The process of averaging 

The process of averaging is a routine data reduction technique as well as the basis of much of statistical 

inference. In its simplest form, the sample arithmetic average or mean  X  is defined as 

𝑋‾ =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

Other types of means are available, including the geometric mean, the harmonic mean, and the 
weighted mean. The last of these is particularly pertinent to model averaging. 

Weighted Averages 

In the computation of the simple arithmetic mean, the individual iX values all receive the same weight 

of 
1

𝑛
. While this is appropriate in many cases, it’s not useful when the components contribute to 

varying degrees such as the time-varying concentration shown in Figure 8. 

There are 5 values of concentration in Figure 8 (from L to R): {0.25, 0.95, 0.25, 0.12, 0.5}. The simple 
arithmetic mean of these concentrations is 𝑋‾ = 0.414. However, this ignores the different durations 
of each of the 5 concentrations. Of the 170 hours, 63 were at concentration 0.25, 25 at concentration 
0.95, 23 at concentration 0.25, 23 at concentration 0.12, and 36 at concentration 0.50. So, if we were 
to weight these concentrations by time have: 

 
 

63 0.25 25 0.95 23 0.25 23 0.12 36 0.50 56.01
0.33

63 25 23 23 36 170
TWX

        
  

   
 

Figure 8. Example of a concentration that varies over time. 
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From this simple example, it is easy to see that the weights applied to each of the 5 concentrations 

are  
63 25 23 23 36

, , , , 0.371,0.147,0.135,0.135,0.212
170 170 170 170 170

 
 

 
. The formula for a weighted 

average is: 

𝑋‾ =∑𝑤𝑖𝑋𝑖

𝑛

𝑖=1

 

with 0 ≤ 𝑤𝑖 ≤ 1 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . Note, the simple arithmetic mean is just a special case of the 

weighted mean with ∑ 𝑤𝑖 =
1

𝑛
𝑛
𝑖=1  ; ∀𝑖 = 1,… , 𝑛 

Model Averaging Explained 

The weighted average acknowledges that the elements in the computation are not of equal 
‘importance’. In the example above, this importance was based on the proportion of time that the 

concentration was at a particular level. Bayesians are well-versed in this concept  the elicitation of 
prior distributions for model parameters provides a mechanism for weighting the degree to which the 
analysis is informed by existing knowledge versus using a purely data-driven approach. Model-
averaging is an information-theoretic approach which attempts to resolve the ecotoxicological 
dilemma of having to choose a single probability model for the SSD. Model averaging has been 
historically usually used in the context of estimating model parameters, or quantities derived from a 

fitted model  for example an EC50 derived from a C-R model. Its use in model averaged SSD’s is new, 
and there are technical issues with implementing model averaging in this setting. This is best explained 
with the use of the following small dataset of toxicity estimates for some chemical: 

1.73 0.57 0.33 0.28 0.30 0.29 2.15 0.80 0.76 0.54 0.42 0.83 0.21 0.18 0.59 

Suppose there are only two possibilities for fitting an SSD  both lognormal distributions. Model 1 is 

the LN(-1.067,0.414) distribution while Model 2 is the LN(-0.387,0.617) distribution. A plot of the 

empirical cdf and Models 1 and 2 is shown in Figure 9. 

We see that Model 1 (green) fits well in the lower, left region and poorly in the upper region, while 

the reverse is true for Model 2 (blue). So, using either Model 1 or Model 2 is going to result in a poor 

fit overall. However, the obvious thing to do is to combine both models. We could try using 50% of 

Model 1 and 50% of Model 2, but that may be sub-optimal. It turns out that the best fit is obtained by 

using 44% of Model 1 and 56% of Model 2. The weighted average of Models 1 and 2 is shown in red 

(Figure 9). 
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Figure 9. Empirical cdf (black) with fitted cdfs overlayed, including: Model 1 (green), LN(-1.067,0.414); 
Model 2 (blue) LN(-0.387,0.617); and averaged Model (red). 

Clearly the ‘appropriate1’ combination of the two models provides a far better description of the data 

than either model alone. 

We next turn our attention to the estimation of an HCx – for example, the HC20. It’s a simple matter 

to work out the individual HC20 values for Models 1 and 2 using the appropriate qlnorm() function 

in R: 

# Model 1 HC20 
cat("Model 1 HC20 =",qlnorm(0.2,-1.067,0.414)) 
#> Model 1 HC20 = 0.2428209 
 
# Model 2 HC20 
cat("Model 2 HC20 =",qlnorm(0.2,-0.387,0.617)) 
#> Model 2 HC20 = 0.4040243 

An intuitively appealing approach to calculating the model-averaged HC20 is to apply the same 

weights to the individual HC20 values used to define the model-averaged SSD in Figure 2 (i.e. the red 

curve). This suggests a model-averaged HC20 of 0.44*0.2428209 + 0.56*0.4040243 = 0.33. 

This how the original version of ssdtools was computing model averaged HCx values. For our 

simplistic example, the model-averaged HC20 estimate is 0.33. As a check, we can determine the 

fraction affected at concentration = 0.33  it should be 20%. However, as can be seen from Figure 10, 

the actual fraction affected at concentration 0.33 is 30%  not the required 20%. 

 
1 By appropriate we mean that combination for which the resulting fit is best in some sense. 
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Figure 10. Fitted cdf and showing the fraction effected back calculated using arithmetic averaging. 

Model Averaged SSDs 

As has been demonstrated for a simple numerical example, applying the model weights to component 

HCx values and summing did not produce the correct result. The reason for this is explained 

mathematically next. 

The fallacy of weighting individual HCx values 

The correct expression for a model-averaged SSD is: 

𝐺(𝑥) =∑𝑤𝑖

𝑘

𝑖=1

𝐹𝑖(𝑥) 

where 𝐹𝑖(⋅) is the ith component SSD (i.e. cdf) and wi is the weight assigned to 𝐹𝑖(⋅). Notice that the 

function 𝐺(𝑥) is a proper cumulative distribution function (cdf) which means for a given quantile, x, 

𝐺(𝑥) returns the cumulative probability: 

𝑃[𝑋 ≤ 𝑥] 

Now, the incorrect approach takes a weighted sum of the component inverse cdf’s, that is: 

𝐻(𝑝) =∑𝑤𝑖

𝑘

𝑖=1

𝐹𝑖
−1(𝑝) 

where 𝐹𝑖
−1(⋅) is the ith inverse cdf. Notice that 𝐺𝑖(⋅) is a function of a quantile and returns a probability 

while 𝐻𝑖(⋅) is a function of a probability and returns a quantile. 

The correct method of determining the HCx is to work with the proper model-averaged cdf 𝐺(𝑥). This 

means finding the inverse function 𝐺−1(𝑝). We’ll address how this is done shortly. 
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The reason 𝐻(𝑝) does not return the correct result is because of the implicit assumption that the 

inverse of 𝐺(𝑥) is equivalent to 𝐻(𝑝). This is akin to stating the inverse of a sum is equal to the sum 

of the inverses i.e. 

∑
1

𝑋𝑖

𝑛

𝑖=1

=
1

∑ 𝑋𝑖
𝑛
𝑖=1

  

There are some very special cases where the above identity does in fact hold, but they involve complex 

numbers which do not arise in ecotoxicology. We therefore conclude: 

𝐺−1(𝑝) ≠ 𝐻(𝑝) 

A visual demonstration can be seen in Figure 11, which is a plot of 𝐺(𝑥) and the inverse of 𝐻(𝑝) both 

as functions of x (a quantile) for our two-component lognormal distribution above (Figure 9).  

 

Figure 11. Plot of 𝑮(𝒙) and the inverse of 𝑯(𝒑) both as functions of x (a quantile) for the two-
component lognormal distribution above. 

Clearly, the two functions are not the same and thus HCx values derived from each will nearly always 

be different (as indicated by the positions of the vertical red and green dashed lines in Figure 11 

corresponding to the 2 values of the HC20). Note that the two curves do cross over at a concentration 

of about 1.12 corresponding to the 90th percentile, but in the region of ecotoxicological interest, there 

is no such cross-over and so the two approaches will always yield different HCx values with this 

difference → 0 as x → 0 (Figure 11). 

We next discuss the use of a model-averaged SSD to obtain the correct model-averaged HCx. 

 



Page | 33 
 

Computing a model-averaged HCx 

A proper HCx needs to satisfy the inversion principle. More formally, the inversion principle states that 

an HCx (denoted as 𝜑𝑥) must satisfy the following: 

𝑑𝑓(𝜑𝑥) = 𝑥  𝑎𝑛𝑑  𝑞𝑓(𝑥) = 𝜑𝑥 

where 𝑑𝑓(⋅) is a model-averaged distribution function (i.e. SSD) and 𝑞𝑓(⋅) is a model-averaged 

quantile function. For this equality to hold, it is necessary that 𝑞𝑓(𝑝) = 𝑑𝑓−1(𝑝). 

So, in our example above the green curve was taken to be 𝑞𝑓(𝑥) and this was used to derive 𝜑𝑥 but 

the fraction affected {= 𝑑𝑓(𝜑𝑥)} at 𝜑𝑥 is computed using the red curve (Figure 11). 

In ssdtools the following is a check that the inversion principle holds: 

# Obtain a model-averaged HCx using the ssd_hc() function 
hcp<-ssd_hc(x, p = p) 
# Check that the inversion principle holds 
ssd_hp(x, hcp, multi_est = TRUE) == p 

This should result in logical TRUE. If the multi_est argument is set to FALSE the test will fail. This is 

a new argument in the revised version of ssdtools that controls how the model averaged HCx 

estimate is calculated and is based on the uniroot() function described below. 

The inversion principle ensures that we only use a single distribution function to compute both the 

HCx and the fraction affected. Referring to Figure 12, the HCx is obtained from the MA-SSD (red curve) 

by following the → arrows while the fraction affected is obtained by following the ← arrows. 

 

Figure 12. Plot of a properly invertible cdf for two-component lognormal distribution show in Figure 9. 
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Computing the HCx in R/ssdtools 

Finally, we briefly discuss how the HCx is computed in R using the method that has been implemented 

in ssdtools. Recall, the MA-SSD is given as 

𝐺(𝑥) =∑𝑤𝑖

𝑘

𝑖=1

𝐹𝑖(𝑥) 

and an HCx is obtained from the MA-SSD by essentially working ‘in reverse’ by starting at a value of 𝑥 

on the vertical scale in Figure 12 and following the → arrows and reading off the corresponding value 

on the horizontal scale. 

Obviously, we need to be able to ‘codify’ this process in R (or any other computer language). 

Mathematically this is equivalent to seeking a solution to the following equation: 

𝑥: 𝐺(𝑥) = 𝑝 

or, equivalently: 

𝑥: 𝐺(𝑥) − 𝑝 = 0 

for some fraction affected, 𝑝. 

Finding the solution to this last equation is referred to as finding the root(s) of the function 𝑮(𝒙) 

or, as is made clear in Figure 13, finding the zero-crossing of the function 𝐺(𝑥) − 𝑝 for the case 

𝑝 = 0.2. In R finding the roots of 𝑥: 𝐺(𝑥) − 𝑝 = 0 is achieved using the uniroot() function. 
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Figure 13. Graphical representation of finding the zero-crossing of the function 𝑮(𝒙) − 𝒑 for the case 𝒑 = 𝟎. 𝟐 for 
two-component lognormal distribution shown in Figure 9. 

Mixture models and Model Averaged SSDs: Philosophical and practical 

considerations 

The Project Team has had several detailed discussions about the differences and similarities between 

a mixture model SSD and a model-averaged SSD. Both are expressible as a weighted linear 

combination of individual theoretical probability density functions (pdfs) and as such the 

mathematical treatment is the same for both. However, what is different is the way in which the 

weights are computed. In the case of model averaging, the weights are determined after fitting all the 

candidate distributions and then re-scaling the individual goodness-of-fit metrics (as measured by the 

AICc), so they sum to unity. In mixture modelling, the weights are explicitly incorporated into the pdf 

as model parameters to be estimated along with the parameters of the component pdfs – subject to 

the constraints that each weight is between 0 and 1 and the sum of all weights is unity. Not 

surprisingly, the resultant model averaged (MA) and mixture distributions are not identical even 

though they have the same component pdfs. This distinction has important ramifications for 

subsequent parametric bootstrapping to estimate HCx confidence intervals. As an example, Figure 14 

shows an empirical cdf with both a mixture model SSD and model-averaged SSD whose component 

distributions are the same (Weibull, log-normal, and log-logistic) but having weights estimated as 

described above. 

A currently unresolved question is: should the model weights be re-estimated for every bootstrap 

sample, or should the model weights be fixed at the values estimated from the models fitted to the 

original sample of toxicity data (see below)? Our current thinking is that they should be fixed at their 

nominal values in the same way that the component distributions to be used in bootstrapping are 

informed by the fit to the sample toxicity data. 

This contrasts with fitting a single mixture distribution where the weights are inherent model 

parameters and not lines of evidence/support for the true, underlying single distribution. 
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Figure 14. Empirical cdf (step function) with fitted model-averaged cdf (comprised of Weibull, lognormal, and 
loglogistic distributions) (blue curve) and fitted mixture-model (comprised of Weibull, lognormal, and loglogistic 
distributions) (red curve) overlaid. 

New methods for CI estimation and SSD weighting 

Although somewhat out-of-scope, two new approaches for obtaining confidence interval estimates 

for an HCx have been developed that does not require bootstrapping. 

The first method takes the confidence interval around the fraction affected (FA) (as determined by 

 ,1 2
ˆ ˆ

n pp t SE p    ) at the HCx and finds the corresponding interval on the abscissa (i.e. for the HCx). 

The method is illustrated in Figure 15. The procedure is entirely analytic and thus requires no 

bootstrapping. 

The second approach is also analytical and recasts the estimation of an HCx as an inverse, non-linear 

calibration problem and uses the minpack.lm and investr packages in R to obtain both point 

and interval estimates for a model averaged HCx without the need for bootstrapping. This results in 

dramatically reduced computational times. 
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Figure 15. Conceptualisation of determination of approximate confidence intervals for HCp. Red arrows indicate forward 
use of the SSD while the cyan arrow indicates the inverse use of the SSD. 

As with ssdtools, the proposed methodology also allows weighted SSD models to be fit to assign 

increased importance to the fit of the SSD in the lower-left tail region. This suggestion has been 

contemplated in the literature for a very long time although, given the selection of weights is 

subjective, it remains a contentious procedure. An example of a weighted SSD applied to the empirical 

cdf of Figure 9 is shown in Figure 16. We can use this approach for the computation of point and 

interval HCx estimates. The appeal of this type of approach is the computational speed – typically 500 

times faster than bootstrapping using 1,000 samples (Table 2). The ‘cost’ of this dramatic increase in 

speed is a potential increase in bias. The analytical methods rely on approximations and asymptotic 

statistical results with the quality of such approximations critically dependent on sample size (n) of the 

input toxicity data set.  
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Figure 16. Comparison of weighted SSD using new approach (red line) and unweighted SSD from ssdtools (blue line) 

applied to empirical cdf of Figure 14 (open circles). 

 

Table 2 Comparison of time taken for obtaining the initial fit and estimating confidence intervals (CIs) between 
ssdtools  and the analytical approach described above and shown in Figure 15. 

Type Method Time 

Initial fit 
 

ssdtools (6 parameters) 0.11 sec 

Analytic method  (6 parameters)  0.02 sec 

CIs 
 

ssdtools (HC1)  15.72 sec; nboot = 500 

42.12 sec; nboot = 1,000 

251.52 se ; nboot = 5,000 

434.29 sec; nboot = 10,000 

Analytic method (HC1) 0.03 sec 

 

While computational time is important, it is nevertheless a second-order consideration. More detailed 

simulation work is required to ascertain whether the procedure gives results comparable with 

bootstrapping in terms of: HCx bias; HCx precision; confidence interval coverage; and confidence 

interval width. A numerical summary for data generated from the Burr III distribution is shown in Table 

3. Given this work is in its infancy and not a core activity of the current project, further investigations 

and analyses are required before any meaningful assessments can be made. However, based on the 

limited evidence provided in Table 3, the following observations can be made: 

- Irrespective of dataset or sample size, there is a monotonic decreasein HCx CI coverage with 
increasing x. The reasons for this are not fully understood, although this is no doubt a function 
of: decreasing CI width with increasing x; and decreasing CI width with increasing x. 
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- HCx coverage is relatively unaffected by sample size. 

- Bias is generally larger than the bootstrapping methods 

- Bias is predominantly positive (i.e. HCx is overestimated) for 32N   and negative (under-

estimation) for 40N  . 

Although this investigation was not a core requirement within the present scope of works, we mention 

it here as a ‘placeholder’ for future exploration should the issue of compute time become a limiting 

factor – particularly when using paid services such as shinyapps.io. Further investigations and 

evaluation of bias and performance would need to be undertaken before recommending this as an 

approved alternative estimation strategy. 

 

Table 3. Summary of analytical method of CI determination (see section 3 of this report). All results based on same 200 
datasets generated from the BurrIII distribution as used in the bootstrap simulations of this report. Columns labelled 
p_HCx are the proportions of two hundred data sets for which the true HCx value was ‘captured’ by the CI; columns 
labelled w_x are average confidence interval widths; and bias_x are average bias values. 

 

dataset p_HC1 p_HC5 p_HC10 p_HC20 w_1 w_5 w_10 w_20 bias_1 bias_5 bias_10 bias_20

aims_aluminium_marine 100.0% 88.6% 71.6% 54.5% 119.1 150.7 153.3 174.3 33.0 75.7 121.9 161.4

anon_b 98.8% 89.0% 72.0% 51.2% 2.8 3.3 3.4 10.8 1.1 1.8 -0.6 -46.4

anon_e 97.5% 92.5% 87.5% 82.5% 111.3 179.7 281.5 621.9 5.9 21.5 51.0 133.0

anzg_metolachlor_fresh 97.6% 88.1% 57.1% 47.6% 12.6 19.3 25.7 40.3 3.3 6.3 8.4 -20.1

ccme_cadmium 98.0% 95.1% 81.4% 63.7% 53254.1 54760.2 38.8 36.2 0.1 0.0 -3.1 -50.3

ccme_chloride 90.8% 93.8% 66.2% 52.3% 222.5 275.4 264.0 276.4 76.4 149.4 222.2 318.0

ccme_uranium 97.5% 91.3% 80.0% 60.0% 71.7 100.4 121.9 156.0 16.0 43.3 72.6 102.5

csiro_chlorine_marine 98.6% 92.9% 65.7% 54.3% 23.4 28.2 25.6 26.4 8.7 16.5 21.3 -10.3

Average 97.3% 91.4% 72.7% 58.3% 6727.2 6939.7 114.3 167.8 18.1 39.3 61.7 73.5

dataset p_HC1 p_HC5 p_HC10 p_HC20 w_1 w_5 w_10 w_20 bias_1 bias_5 bias_10 bias_20

aims_aluminium_marine 96.7% 86.9% 70.5% 54.9% 98.5 124.0 123.1 140.7 33.9 74.9 119.4 212.1

anon_b 98.9% 93.1% 73.6% 54.0% 2.3 2.8 2.5 2.9 0.9 1.4 0.2 -9.8

anon_e 99.0% 100.0% 92.9% 82.7% 40.8 82.3 165.0 453.6 0.3 5.8 24.8 132.7

anzg_metolachlor_fresh 100.0% 92.5% 68.8% 60.0% 3.2 6.0 11.1 29.4 0.4 1.4 2.1 4.4

ccme_cadmium 97.6% 77.4% 68.5% 57.3% 98161.5 101295.8 21.1 25.6 0.1 -0.3 -2.3 -14.0

ccme_chloride 97.1% 83.8% 67.6% 48.5% 139.0 188.0 194.7 196.7 42.7 108.4 184.6 339.9

ccme_uranium 98.9% 81.8% 59.1% 47.7% 45.4 63.5 75.6 96.1 14.0 34.3 58.9 121.2

csiro_chlorine_marine 100.0% 91.9% 75.7% 63.5% 20.4 24.1 20.5 19.5 8.6 15.8 22.0 25.0

Average 98.5% 88.4% 72.1% 58.6% 12313.9 12723.3 76.7 120.6 12.6 30.2 51.2 101.4

dataset p_HC1 p_HC5 p_HC10 p_HC20 w_1 w_5 w_10 w_20 bias_1 bias_5 bias_10 bias_20

aims_aluminium_marine 100.0% 89.1% 75.2% 60.6% 78.3 100.4 98.8 114.5 27.6 67.0 113.5 214.2

anon_b 98.0% 83.8% 68.7% 55.6% 1.7 2.2 2.0 2.2 0.5 1.3 2.2 3.8

anon_e 100.0% 98.7% 93.6% 73.7% 25.1 53.3 111.1 315.6 0.2 4.9 22.8 127.4

anzg_metolachlor_fresh 97.2% 83.1% 70.4% 56.3% 3.1 6.3 11.2 23.3 0.3 1.9 5.5 20.2

ccme_cadmium 98.1% 88.9% 75.0% 64.8% 0.2 0.3 0.3 0.5 0.0 0.0 0.0 0.1

ccme_chloride 98.8% 83.8% 70.0% 56.3% 124.1 164.0 173.4 177.2 35.1 98.4 175.7 334.4

ccme_uranium 99.1% 77.4% 66.1% 46.1% 35.5 50.1 62.7 89.7 9.9 28.1 54.3 125.5

csiro_chlorine_marine 98.9% 77.5% 58.4% 47.2% 16.9 19.0 16.8 15.2 6.2 14.4 22.7 37.0

Average 98.8% 85.3% 72.2% 57.6% 35.6 49.4 59.5 92.3 10.0 27.0 49.6 107.8

dataset p_HC1 p_HC5 p_HC10 p_HC20 w_1 w_5 w_10 w_20 bias_1 bias_5 bias_10 bias_20

aims_aluminium_marine 99.2% 83.5% 69.4% 54.5% 73.0 89.7 89.6 103.0 9.5 -12.5 -41.9 -96.6

anon_b 99.1% 86.1% 67.6% 50.9% 1.6 2.0 1.9 2.0 -15.9 -76.9 -151.8 -304.9

anon_e 100.0% 98.9% 86.0% 69.7% 14.6 36.5 84.1 255.9 -16.3 -73.9 -133.2 -185.7

anzg_metolachlor_fresh 99.0% 83.7% 71.4% 56.1% 2.0 4.4 8.1 19.2 -16.1 -76.8 -149.6 -291.9

ccme_cadmium 98.0% 82.2% 75.2% 61.4% 0.2 0.2 0.3 0.4 -16.4 -78.1 -153.9 -308.8

ccme_chloride 100.0% 80.0% 66.7% 58.9% 102.6 135.7 145.9 155.0 15.7 10.9 6.0 10.1

ccme_uranium 99.2% 87.0% 62.6% 54.5% 29.9 49.7 62.6 84.8 -10.6 -53.7 -99.0 -178.2

csiro_chlorine_marine 99.0% 91.8% 76.5% 56.1% 14.9 17.0 16.2 15.4 -10.9 -64.8 -132.1 -270.6

Average 99.2% 86.6% 71.9% 57.8% 29.8 41.9 51.1 79.5 -7.6 -53.2 -106.9 -203.3

N=16

N=24

N=32

N=40
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4.1.3 Task S2: Output customisation 

The team has worked through the list of customisations that were identified and circulated last year 

amongs the project team. All have been implemented in a development version of the Shiny App 

hosted on the Poisson consulting website ( https://poissonconsulting.shinyapps.io/shinyssdtools-

dev/) as well as a newly-created Australian prototype website (https://shinyssd.tools). 

These customisations include: 

- Ensuring greater consistency in the plots on both the Fit and Predict tabs 

- Allowing edits to the x and y labels 

- Adding drop down lists for selection of protection values in line with the ANZG (99, 
95, 90, 80%) and autopopulating the corresponding fraction effected 

- Resolving an issue that was preventing the dotted protection values not appearing 
for ssd_hp() 

- Allowing adjustment of the x axis limits, as well as adding custom tick mark labels to 
the x axis 

- Allowing adustment of axis title size 

As mentioned above, the url https://shinyssd.tools has been registered by Environmetrics Australia 

and a prototype web-page site created. Further customisation and additional DECCEW/ANZG 

branding can be added as hosting issues are resolved. Screenshots of the updated development 

version of the Shiny App hosted on the Poisson consulting website for the Data, Fit and Predict tabs 

are shown in figures Figure 17, Figure 18 and Figure 19, respectively. 

We have also included an additional button allowing the user to request a report to be generated from 

the customised shiny output (Figure 20). Once generated, the report can be saved as either an html, 

pdf or raw .Rmd file. An example pdf of the report is in Appendix C, using the Boron data and based 

on the defaults settings used. The format and content of the report mimics the original Burrlioz report, 

and outputs the default protection ANZG (99, 95, 90, 80%) protection values and a plot of the model 

averaged SSD. It also includes an additional plot showing the fit of all fitted distributions, as well as a 

table of their relative goodness of fit statistics. Further customisation options have been provided in 

line with feedback on earlier versions. 

https://poissonconsulting.shinyapps.io/shinyssdtools-dev/
https://poissonconsulting.shinyapps.io/shinyssdtools-dev/
https://shinyssd.tools/
https://shinyssd.tools/
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Figure 17. Screenshot of the Data tab in the updated development version of Shiny App hosted on the Poisson consulting website. 
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Figure 18. Screenshot of the Fit tab in the updated development version of Shiny App hosted on the Poisson consulting website. 
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Figure 19. Screenshot of the Predict tab in the updated development version of Shiny App hosted on the Poisson consulting website. 
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4.1.4 Task S4: Update documentation 

A detailed inventory of the existing documentation of the ssdtools github website (found at 

https://bcgov.github.io/ssdtools/index.html) was undertaken, and it was decided to re-work and 

rationalise the content to form a more coherent, and logically linked set of vignettes, and this has now 

been implemented in the development version of ssdtools. 

The documentation in the development version now includes the following vignettes (see Appendices 

H-M): 

1. ‘Getting Started with ssdtools’ – This is a basic overview of the functionality of the ssdtools 

package, with simple examples of usage. This includes a basic introduction and the philosophy behind 

SSD modelling; instructions on installing, getting help, inputting data and fitting distributions; 

instructions for obtaining coefficients, plotting, selecting a distribution and obtaining model averaged 

outputs, estimating the fit and obtaining hazard and protection values; and finally, a description of the 

censoring capabilities in ssdtools. 

2. ‘Model averaging’ – This includes a digestible explanation/background of what model 

averaging does and how the revised version of ssdtools implements model averaging to estimate 

HC and HP by treating the model set as a mixture and using the uniroot function to derive HC/PP 

values from the model-averaged cdf. Much of the content in section 4.1.1 overlaps with this vignette. 

3. ‘Distributions in ssdtools’ – This includes some background on the distributions for SSD 

modelling, including the distributions adopted in the original version of ssdtools, the introduction 

of the Burr Type III distribution adopted in Burrlioz, as well as an information on the value of using 

mixture distributions for bi-modal datasets. The set of recommended default distributions is explained 

(see Figure 21) and there is also a detailed account of all the distributions that are available in 

ssdtools which includes information on stability (if relevant) and discussion around their use in SSD 

modelling. 

Figure 20. Screenshot of the BCANZ Report tab in the updated development version of Shiny App hosted on the Poisson consulting 
website. 

https://bcgov.github.io/ssdtools/index.html
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Figure 21. The default list of candidate distributions in ssdtools, comprised of the following: log-normal; log-logistic; 

gamma; inverse Weibull (log-Gumbel); Weibull; and mixture of two log-normal distributions. Shown are these default 
distributions plotted with a mean of 2 and standard deviation of 2 on the (natural) log concentration scale or around 7.4 
on the concentration scale. 

 

4. ‘Confidence intervals in ssdtools’ – This includes some basic information on bootstrapping 

and recommendations of the number of bootstrap samples that should be used. A description of 

parametric versus non-parametric bootstrapping (this is a fundamental difference between the 

default behaviour of ssdtools and the original Burrlioz software) and a justification for the default 

parametric bootstrapping. In addition, there is a description of the three parametric bootstrapping 

methods now implemented in the revised version of ssdtools following investigations S1 & S3, with 

an explanation of how these differ and information on which methods should be used, with 

justification. 

5. ‘Embellishing plots’ – This explains how to make a simple plot of the cumulative distribution, 

along with options for customisation, including how to add the model averaged fit, confidence interval 

ribbons, and data ranges for censored data (see Figure 22).  
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Figure 22. Example of possible plot embellishments available through ssdtools and the ggplot2 packages in R. The plot 
shows the range of censored species sensitivity data, with 95% confidence interval ribbons; the fitted model averaged 
ssd and interpolated HC5. 

 

Examples from the existing vignette have been retained, including how to plot multiple SSD’s together, 

and embellish a plot with an exposure distribution. 

6. ‘Additional technical details’ – This vignette is a home for important technical details that are 

useful to include, but that are too technical for the other vignettes. This vignette will provide 

important technical details for more advanced users seeking additional mathematical and statistical 

detail about ssdtools. The vignette currently includes a short summary of small sample bias in 

maximum likelihood estimation with a link to a detailed pdf, as well as technical information on the 

inverse Pareto and inverse Weibull distributions as limiting distributions of the Burr III distribution. 

 

4.1.5 Task S5: Review ‘stable” and ‘unstable’ distributions 

Unstable distributions 

In our previous project (Fox et al 2021) we identified a range of stability issues with various 

distributions currently implemented in ssdtools ( 

Figure 23).  
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Figure 23. The proportion of simulated datasets/iterations for which the ssdtools -fitted distributions were able 
successfully converge. Note that for the Burr III and both mixture distributions, this proportion includes distributions 
that may have returned a result, but this was at one of the bounds of the parameter set (i.e. shape1 or shape2 = 20 or 
0.05 in the case of Burr III, or p=<0.2 in the case of mixtures). Reproduced from Figure 32, Fox et al 2022. 

These included occasional issues with the Inverse Pareto and Burr III  (Figure 23). There were also 

surprisingly sometimes convergence issues with the lognormal distribution for very high samples sizes. 

Here we Investigate and/or discuss ‘all’ known convergence issues with the distributions in 
ssdtools. 
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Burr III 

Numerical instability in the Burr III distribution is well known and has been investigated thoroughly in 

previous work by the team. The instability is due to the high degree of collinearity between parameter 

estimates and/or relatively flat likelihood profiles (Fox et al. 2021), and is one of the motivations 

behind the logic coded into Burrlioz to revert to either of the two limiting distributions. The Burr III 

distribution is not currently one of the recommended distributions in the default model set. This is 

because of 1) unresolvable convergence issues associated with reverting to the limiting forms of the 

Burr III distribution; 2) the fact that reverting to a limiting two parameter distribution does not fit 

easily within a model averaging framework; and 3) that one of the two limiting distributions (the 

inverse Pareto, see below) also has estimation and convergence issues. 

Inverse Pareto 

While the inverse Pareto distribution is implemented in the Burrlioz 2.0 software, it is important to 

understand that it is done so only as one of the limiting Burr distributions (see above for details). The 

inverse Pareto is not offered as a stand-alone option in the Burrlioz 2.0 software. We have spent 

considerable time and effort exploring the properties of the inverse Pareto distribution, including 

deriving bias correction equations and alternative methods for deriving confidence intervals (Fox et 

al. 2021). This work has substantial value for improving the current Burrlioz 2.0 method, and our bias 

corrections should be adopted when deriving HCx estimates from the inverse Pareto where 

parameters have been estimated using maximum likelihood. 

As is the case with the Burrlioz 2.0 software, we have decided not to include the inverse Pareto 

distribution in the default candidate set in ssdtools although it is offered as a user-selectable 

distribution to use in the model-fitting process. This decision is based largely on the fact that the 

distribution is mathematically bounded by the maximum value in the input data and is thus 

inappropriate for use as a stand-alone SSD. 

Gompertz 

Prior testing has shown that the Gompertz distribution can have poor convergence behaviour (see 

Figure 32 in Fox et al 2021). Further, even with the same dataset, ssdtools can return different 

parameter estimates based on different seeds, which suggests a very high degree of instability, even 

where the distribution has successfully fitted (see https://github.com/bcgov/ssdtools/issues/223).  

Investigations into some of these failed fits suggests that there are inherent difficulties with fitting the 

gomptertz distribution to some datasets that occur within ssdtools as well as alternative packages, 

such as fitdistrplus (see Figure 24. Example of a dataset showing instability for the Gompertz 

distribution using (a) ssdtools and (b) fitdistrplus. The ssdtools fit did not achieve 

convergence and although the fitdistrplus package did achieve convergence, the fit it is identical 

(apart from the rescaling of the horizontal axis) to the fit from ssdtools. In both cases the fit is poor. 

Figure 25. fitdistrplus profile likelihood plot as a function of the log(location) and log(scale) 

parameters of the fitted Gompertz distribution in Figure 24(b). The ridge (indicated by the white 

region) suggests an infinite number of plausible fits. The likelihood for the current fit is indicated by 

the ‘X’.We believe this is most likely due to very flat likelihood profile, suggesting there are an infinite 

number of equally plausible estimates (Figure 25). This issue appears to associated with the fact that 

the testing data do not fit within plausible parameter combinations of the gompterz distribution (see 

more detailed information in Appendix D). In such cases, it may not be possible to ever resolve 

convergence issues. Failure to converge in the initial model set would simply suggest it is a poor model 

https://github.com/bcgov/ssdtools/issues/223
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for that data. Where the gompterz fits well, it is possible it might be considered, providing pboot 

values are high in confidence interval estimation. 

 

Figure 24. Example of a dataset showing instability for the Gompertz distribution using (a) ssdtools and (b) 

fitdistrplus. The ssdtools fit did not achieve convergence and although the fitdistrplus package did 

achieve convergence, the fit it is identical (apart from the rescaling of the horizontal axis) to the fit from ssdtools. In 

both cases the fit is poor. 

Figure 25. fitdistrplus profile likelihood plot as a function of the log(location) and log(scale) parameters of the 

fitted Gompertz distribution in Figure 24(b). The ridge (indicated by the white region) suggests an infinite number of 
plausible fits. The likelihood for the current fit is indicated by the ‘X’. 
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To examine if convergence is reliable once a Gompertz distribution has been fit, we extracted datasets 

from Simulation study 1 and examined pboot values for all fits that were able to return a successful fit 

to the Gompertz distribution. We found that there were highly variable outcomes for pboot for 

successfully fit Gompertz models (Figure 26). Values of pboot for extremely large sample sizes 

(N=1,000) were always below 0.95. For all sample sizes <128 median pboot was > 0.95 (Figure 26). In 

all cases however, there were examples where pboot values were extremely low, suggesting there 

are pervasive convergence issues when bootstrapping the Gompertz, even when data are generated 

using a Gompertz distribution. 

 

In addition to the observed instabilities in bootstrapping, the Gompertz can also fail to converge to 

the same dataset when a different seed is used to call the optimisation algorithm.  

To illustrate, we refited the example data from the posted github issue 

(https://github.com/bcgov/ssdtools/issues/223) using a range of different seeds, using the following 

R code:  

x <- c(3.15284072848962, 1.77947821504531, 0.507778085984185, 1.650387414067, 

1.00725113964435, 7.04244885481452, 1.32336941144339, 1.51533791792454) 

test_issues_dat_seed <- lapply(1:100, FUN = function(s){ 

   set.seed(s) 

fit <- try(ssd_fit_dists(data, left = 'Conc', dists = "gompertz", rescale = 

FALSE), silent = TRUE) 

}) 

Of these 100 seeds 31 were able to return a valid fit, with the remaining 69 failing. We extracted HC 

estimates from the successful fits via: 

HC_vals <- sapply(test_issues_dat_seed, FUN = function(g){ 

  if(class(g)=="fitdists"){return(ssd_hc(g)$est)} 

}) 

The estimated HC5 values ranged from 0.115 to 0.376 across the 31 successful fits, with a median of 

0.134. This represents a 1.9 fold difference in the HC estimate, from a single dataset based entirely on 

differences among seeds. Such behaviour is clearly problematic in the context of scientific 

Figure 26. Convergence propabilities (pboot) as a function of sample size (N) for all datasets from Simulation study 1 from Fox et al. 
2021 for which the Gompertz distribution was able to successfully fit. 

https://github.com/bcgov/ssdtools/issues/223
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reproducibility, and suggests that if the gompertz were implemented it would be necessary as a 

minimum to set a seed to obtain consistent results.  

Weibull 

The team revisited the data from simulation study 1 using the most revent development version of 

ssdtools and were unable to reproduce the originally observed instability reported in Table 4 of Fox 

et al. (2021). We therefore conclude that other edits to the ssdtools codebase since the 2021 report 

have also resolved this instability issue, and the Weibull can be considered a stable distribution and 

should be included in the default model set. 

 

Table 4. Convergence probabilities for Simulation study 1 data, for the current working version of ssdtools 

N gamma lgumbel llogis lnorm lnorm_lnorm weibull 

8 0.996581 1 0.99962 1 0.694149 1 

16 0.990881 1 1 1 0.783435 1 

32 0.992781 0.99924 0.99962 1 0.824468 1 

64 0.990881 0.99962 0.99886 0.992021 0.842705 1 

128 0.995821 0.99886 0.99962 0.988982 0.87538 0.99886 

1000 0.985182 1 0.9981 0.977584 0.885638 0.99848 

 

lognormal 

Somewhat paradoxically, prior testing has shown that the lognormal distribution can exhibit 

convergence issues when sample sizes are very high (see Figure 32, Fox et al. 2021). For example, from 

Simulation study 1 the lognormal distribution failed to fit up to 14% of the time when N=1,000 for 

data simulated from an Inverse Weibull, log logistic and lognormal distributions (see Figure 32, Fox et 

al. 2021).  

Investigation into this issue revealed that the non-convergence of the lnorm for large samples sizes 

(e.g. 1,000) is because the initial values which are estimated from the input data were set equal to the 

MLEs (see more details in Appendix E). This causes issues with the specific optimization algorithm 

utilized in ssdtools via the R package TMB. The source of the problem appears to come from some 

deep-seated issue in the old (Fortran 77) solvers being used by TMB. The current solution is to adjust 

all initial values prior to passing to the optimization engine, to ensure they are not the exact MLE 

solutions. This approach successfully resulted in much higher convergence rates for the Study 1 

simulation data from Fox et al. 2021 (Table 5). From a practical perspective this issue is minor as it 

impacts only very large sample size SSDs  is highly unlikely to be an issue for the sample sizes typically 

encountered for SSD modelling in ecotoxicology (e.g. <100). 

 

Table 5. Convergence probabilities for the Simulation study 1 datasets from Fox 
et al. 2021, for the lognormal distribution, across a range of sample sizes. 

8 16 32 64 128 1000 

1 1 1 0.990502 0.985562 0.97758 
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This solution is a temporary fix as it does nothing to address the underlying issue. In the case where 

closed form solutions for ML estimation exist it would be possible to implement these for the relevant 

distributions using binary logic that by-passes the solver and just returns the exact values. Such a 

solution would require significant re-working of the ssdtools code base and is beyond the scope of 

the present work. The temporary work-around that has been implemented is technically 

unsatisfactory, but nevertheless ensures reliable fits with accurate MLE estimates and can be adopted 

safely in the interim. 

 

Lognormal-lognormal mixture 

 

See Appendix F and Task M2 below. 

 

4.1.6 Task S6: Fix documentation for ssd_hc() and ssd_hp() 

The documentation for ssd_hc() and ssd_hp() in the ssdtools helpfiles has been updated (see 

Appendix G). The detail contained in the text now reads: 

‘Model-averaged estimates and/or confidence intervals (including standard error) can be calculated 

by treating the distributions as constituting a single mixture distribution versus 'taking the mean'. 

When calculating the model averaged estimates treating the distributions as constituting a single 

mixture distribution ensures that ssd_hc() is the inverse of ssd_hp(). 

If treating the distributions as constituting a single mixture distribution when calculating model 

average confidence intervals then weighted specifies whether to use the original model weights versus 

re-estimating for each bootstrap sample unless 'taking the mean' in which case weighted specifies 

whether to take bootstrap samples from each distribution proportional to its weight (so that they sum 

to nboot) versus calculating the weighted arithmetic means of the lower and upper confidence limits 

based on nboot samples for each distribution. 

Distributions with an absolute AIC difference greater than a delta of by default 7 have considerably 

less support (weight < 0.01) and are excluded prior to calculation of the hazard concentrations to 

reduce the run time.’ 

4.1.7 Task M1: Integrity checks 

Decision rules for minimum data requirements with and without mixtures. 

The lognormal-lognormal has a total of 5 parameters – a   and   value for each of the 2 component 

distributions and a mixing proportion mixp . As a rule-of-thumb1, the absolute minimum number of 

data points required to fit a 5 parameter distribution should be n ≥ 3k+1, where k is the number of 

estimated parameters, which in the case of the lognormal-lognormal mixture suggests a minimum of 

sample size of 16 uncensored data points. Preferablly there would be n ≥ 5k+1 1, which for the 

lognormal-lognormal mixture suggests a preferred samples size of at least 26. These guidelines have 

 
1 Prof. David Fox, pers comm. 
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been included in the lognormal-lognormal mixture section of the updated distributions vignette in 

ssdtools. 

These guidelines have have ramifications in the context of consistency across distributions. For the 

two parameter distributions this would result in a minimum of 7 which is slightly higher than the 

current values across both jurisdictions. Burriloz currently requires only 5, and the CRAN 1.0.6 version 

of ssdtools requires 6. For a three parameter distribution distribution (ie the Burr III) the required 

minimum sample size would be 10, which is also greater than is currently required by Burrlioz to fit a 

Burr III distribution (N=9).  

While we have made recommendations on required and preferred sample sizes, these should form 

the basis of further discussions. A final decision on minimum and preferred samples sizes is a matter 

that should be referred to the technical committee, preferably prior to the revision of Warne et al. 

2018. 

Inclusion/exclusion rules based on data attributes (e.g. left and right censoring). 

Interval and left censoring is currently implemented in the current CRAN version 1.0.6 of ssdtools. 

Censoring can be specified by providing a data set with one or more rows that have: 

- a finite value for the left column that is smaller than the finite value in the right column (interval 

censored) 

- a zero or missing value for the left column and a finite value for the right column (left censored) 

It is currently not possible to fit distributions to data sets that have an infinite or missing value for the 

right column and a finite value for the left column (right censored) 

Rows that have a zero or missing value for the left column and an infinite or missing value for the right 

column (fully censored) will result in an error. Right censored data may occur when a CR experiment 

fails to return a valid toxicity estimate because there was no response at the highest treatment, and 

can occur. We have an open issue to implement ssdtools with right censored data (not just interval 

and left censored (see https://github.com/bcgov/ssdtools/issues/207)) but it is not a deliverable 

under the current contract.  

For uncensored data, Akaike Weights are calculated using AICc (which corrects for sample size). 

In the case of censored data, Akaike Weights are calculated using AIC (as the sample size cannot be 

estimated) but only if all the distributions have the same number of parameters (to ensure the weights 

are valid). This is a challenge for the mixture distributions because the number of rows is not the 

number of datapoints when there are censored data. A solution is to impose restrictions on the 

distribution sets for which censored data are allowed to ensure all are of the same parameter count, 

and/or warnings when AIC is used instead of AICc.  

Australia has not historically accommodated censoring through the Burrlioz software, and for now 

there is no reason for this to be adopted prior to implementation in Australia. Any final decisions on 

this topic should be deferred to the technical committee for discussion. 

https://github.com/bcgov/ssdtools/issues/207
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4.1.8 Task M2: Convergence issues with the lnorm-lnorm distribution 

Prior testing has shown that the lognormal-lognromal mixture distribution can have poor convergence 

behaviour in ssdtools (see Figure 32, Fox et al 2021). This behaviour can result in low pboot values 

being returned during bootstrapping of some distributions (see the related issue at 

https://github.com/bcgov/ssdtools/issues/295). To ensure reasonable behaviour, ssdtools has 

lowered the pboot tolerance for the bcanz function to ensure the lognormal-lognormal mixture 

distirbution to ensure its inclusion. The pboot argument was introduced when the backend of 

ssdtools was converted to TMB. This parameter tracks the number of successfullly converging 

bootstrap samples, and was initially set at 99, meaning the number of non-convergent samples that 

would be tolerated was no more than 1%.. In hindsight,  was overly conservative, and we note that 

neither the original implentation of ssdtools. Nor Burrlioz 2.0 track bootstrap convergence.  This 

default cut-off value has now been lowered to 95% (5%). non-convergence rate However, lowering 

pboot has the potential to intoduce bias in the HC and HP confidence interval estimation. We 

examined the stability of the lnorm-lnorm mixture distribution using a range of testing data, and 

evaluated different strategies for improving convergence reliability so this mixture distribution can be 

included with confidence in the default set when the minimum sample size requirements are met (see 

M1, section 4.1.7). 

Note that the primary purpose of improving stability of the lognormal-lognormal mixture distribution 

is to ensure sucessful bootstrap sampling and maximize the returned value of pboot to minimise the 

possibility of potential bias in HC and HP confidence interval estimates. Failure of the lognormal-

lognormal mixture distribution to fit initially to the original data is of less concern, because the mixture 

will simply be left out of the model set. In that case, failure to converge simply suggests that the 

mixture distribution is inappropriate for these data. 

Investigations suggested that in general poor convergence is usually related to issues with the 

optim() solver used by ssdtools when attempting to fit a lognormal mixture model to data that 

display little or no bi-modality. In such instances, we would expect the estimated pmix to be close to 

zero or one, however ssdtools fails with an error message. Importantly, there are a range of other 

solvers outside of ssdtools that are able to obtain valid parameter estimates for lognormal-lognormal 

mixtures distributions even when the pmix parameter is near the boundary (see Table 6, p5). 

Table 6. Paramater estimates (p1-p5) and convergence statistics for a lognormal-lognormal mixture distirbution fitted to 
an example dataset that ssdtools fails to fit (see Appendix F) obtained across all available methods available in the R 
package optimx. 

 
p1 p2 p3 p4 p5 value fevals gevals niter convcode kkt1 kkt2 xtime 

L-

BFGS-B 2.44 0.02 1.05 1.03 1.00 -98.60 77 77 NA 52 FALSE NA 0.11 

nlminb 2.44 0.02 2.09 1.14 1.00 -99.55 166 1154 150 1 FALSE NA 0.09 

spg 2.54 0.00 2.44 0.02 0.00 -94.88 396 NA 363 0 NA NA 0.24 

Rcgmin 2.17 1.58 2.61 0.16 0.00 2067.25 41 17 NA 0 FALSE FALSE 0 

Rvmmin 2.15 3.74 2.44 0.03 0.00 -12.93 41 21 NA 21 FALSE FALSE 0 

bobyqa 2.51 0.18 1.10 1.02 0.92 1796.39 28 NA NA 0 FALSE FALSE 0 

nmkb 2.44 0.02 2.68 0.34 1.00 -100.40 796 NA NA 0 FALSE NA 0.19 

hjkb 2.44 0.04 2.44 0.02 0.04 -103.31 2928 NA 19 0 FALSE TRUE 0.33 

 

https://github.com/bcgov/ssdtools/issues/295
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We undertook a series of tests to evaluate the effectiveness of different strategies for improving the 

convergence of the lognormal-lognormal mixture distribution. Full details are reported in Appendix F. 

We started by re-factoring the ssdtools code such that the pmix paramater of the lognormal-

lognormal mixture distribution is explicitly bounded at 0 and 1, instead of being modelled on the logit 

scale as is done in ssdtools version 1.0.6. This resulted in a 20% improvement in convergence success 

(see red bars, Figure 27). 

We also tested a range of possible lower bounds for the mixing proportion, and found that setting the 

lower bound of the mixing proportion relative to the sample size of the input data can result in 

substantial improvements to convergence reliability (see Figure 27, and further details in Appendix F). 

Various lower bounds on pmix were investigated and, for the time being, we have settled on restricting 

min_pmix to 3/N. Under these conditions, we achieved > 90% convergence of the univariate 

distributions that originally failed to fit a lognormal-lognormal mixture from Simulation study 1 (Figure 

27) and 99% for a large sample of previously failed boostrap datasets based on the boron example 

from ssddata (see Appendix F). This modification also results in near perfect convergence for true 

mixture distributions, providing valid fits include those with estimated pmix values at the bounds 

(at_boundary_ok, see Appendix F). 

Based on these results, as a pragmatic solution to the convergence issues in ssdtool we are 

recommending that a min_pmin value of 3/N be used as an interim default, and that convergence at 

the bounds is allowed for the lognormal-lognormal mixture distribution during bootstrap sampling.  

Figure 27. Proportion of successfully fitted data sets based on Simulation study 1 that originally failed to fit the 
lognormal lognormal mixture distribution using the ssdtools version 1.0.6 implementation of pmix on the logit scale 
with no bounds. Four different pmix bounds were examined including 0-1 bounded, and lower bounded at 1/N, 2/N 
and 3/N, where N is the test data size. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Obtaining model averaged HC/P estimates and CIs 

This report documents the main outcomes and findings of many mathematical, statistical, and 

computational analyses associated with Tasks S1 (methods for obtaining HCx confidence intervals) 

and S3 (reconciliation of the ssdtools  hc()– hp() inconsistency ). 

The current version of ssdtools now correctly computes phc  for a model-averaged SSD such that 

_ pssd hp hc p  
 

. 

With respect to point estimation of an HCx, we demonstrated that the use of new ssdtools 

function, ssd_qmulti() has uniformly smaller bias than any of the other methods examined. 

ssd_qmulti() applies the R uniroot function to the single, model-averaged SSD rather than 

applying the MA weights to the quantiles estimated from the component distributions. 

We investigated five methods for computing a confidence interval for the HCx and found that: 

1. the weighted_sample method provides superior coverage for the estimation of HC1 
and HC5 with relatively small differences in coverage among all methods for the 
estimation of HC10 and HC20; 

2. the CI width was invariant to differences in: parent distribution for random data 
generation; sample size; characteristics of the dataset; and HCx value. Furthermore;  

3. there is an almost perfect 1-to-1 correspondence between the CI limits obtained using 
the weighted_sample method and those derived from the ssd_qmulti()function.  

4. the weighted_sample method is approximately 10x faster than the methods utilizing 
the ssd_qmulti(), ssd_pmulti(), and ssd_rmulti()functions. 

Our recommendations follow. 

 

Recommendation #1 

The CRAN-version of ssdtools be updated to incorporate the new functions and associated 
uniroot procedures for HCx estimation: ssd_qmulti(), 

ssd_pmulti(),ssd_rmulti(); ssd_dmulti()thereby resolving the hc()-hp() 

inconsistency identified in Task S3. 
 

Recommendation #2 

Subsequent releases of ssdtools use the weighted_average method to determine 
confidence intervals for the HCx estimated by the procedures specified in Recommendation 
#1. 

5.2 Lognormal-lognormal stability 

Investigations into lognormal-lognormal convergence reliability revealed there are issues with 
the optim solver in ssdtools when estimating the mixing parameter at values near 0 and 1. 
These issues may not be able to be resolved with the currently available solvers within 
ssdtools. After testing several possible criteria as bounds for the mixing proportion, we 
found substantial improvements to convergence for lower bounds set of 3/N. 
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Recommendation #3 

The minimum bound for pmix (mixing proportion) should be set at 3/N 

5.3 Final set of ‘stable’ distributions 

We carried out a thorough investigation into the distributions currently implemented in 
ssdtools showing unstable behaviour. Some of these instabilities are well understood and 
cannot be resolved. For other distributions, there are theoretical considerations for not 
considering them in the default set, regardless of stability. The team were able to implement 
fixes that improved the convergence reliability of the lognormal-lognormal distributions, such 
that this should now reliably converge. 

 
Recommendation #4 

The final set of ‘default’ distributions recommended have not changed from our original 

recommendations, and include:  

 Gamma 

 Log-Gumbel 

 Log-logistic 

 Lognormal 

 Lnorm_lnorm 

 Weibull 

5.4 Decision rules for minimum data requirements 

Reasonable decision rules around minimum data requirements were discussed. As a rule-of-thumb, 

the absolute minimum number of data points required to fit a 5 parameter distribution should be 

n≥3k+1, where k is the number of estimated parameters. Perferablly there would be n≥5k+1. Based 

on these criteria we recommend: 

Recommendation #5 

The minimum sample size for two parameter distributions should be 7 (Gamma, Log-Gumbel, 

Lognormal and Weibull), for three parameter distributions should be 10 (Burr III, not a default 

distribution), and for five parameter distributions this should by 16 (lognormal-lognormal). To enforce 

these recommendations in the ssd_fit_bcanz() function requires approval by the technical 

committee.  

Recommendation #6 

The preferred minimum sample size for two parameter distributions should be 11 (Gamma, Log-

Gumbel, Lognormal and Weibull), for three parameter distributions should be 16 (Burr III, not a default 

distribution), and for five parameter distributions this should by 26 (lognormal-lognormal). This 

requires approval by the technical committee.  

5.5 Censoring 

While ssdtools allows left censoring, the package does not support right censoring (see 

https://github.com/bcgov/ssdtools/issues/207) and this would require additional support to resolve. 

https://github.com/bcgov/ssdtools/issues/207
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Finally, there are unresolved issues related to the sample size being undefined with censoring that 

need further examination. The current ANZG method has not historically accommodated censoring as 

this was not available through the Burrlioz software, and is is therefore not critical that issues with 

censoring be resolved prior to adoption of ssdtools as a relacement to Burrlioz. Any final decisions on 

censoring should be deferred to the technical committee for discussion and recommended actions 

(see also Further work below). 

 

Recommendation #7 

Issues around allowing censoring in ssdtools be referred to the technical committee for further 

consideration. 

6. COMPLETE LIST OF ADDITIONS AND MODIFICATIONS TO 

SSDTOOLS 

6.1 Additions 

- Added David Fox and Rebecca Fisher as co-authors. 

- Added to ssd_hc() and ssd_hp(). 

- multi_est = TRUE argument to calculate model averaged estimates treating the distributions 

as constituting a single mixture distribution. 

-   - `method_ci = "weighted_samples"` to specify whether to use 

`"weighted_samples"`, `"weighted_arithmetic"`, `"multi_free"` or 

`"multi_fixed"` methods to generate confidence intervals. samples 

argument to include bootstrap samples as list of numeric vector(s). 

- save_to argument to specify a directory in which to save the bootstrap datasets as csv files and 

parameter estimates as rds files. The files are named data_000000001_xx.csv and 

estimates_000000001_xx.rds etc where xx is the distribution. The parent data set and 

estimates are named boot_000000000_xx.csv and estimates_000000000_xx.csv. 

- Added ssd_pmulti(), ssd_qmulti() and ssd_rmulti() for combined mixture 

distributions. 

- Added ssd_exx() functions to get default parameter estimates for distributions. 

- Added ssd_hp.fitburrlioz() function to get hazard proportion. 

- Add trans = "log10" and add_x = 0 arguments to ssd_plot() and ssd_plot_data(). 

6.2 Modifications 

- Changed to min_pboot = 0.95 for all functions. 

- estimates.fitdists()now includes weights in returned parameters as well as an 
all_estimates = FALSE argument to allow parameter values for all implemented 
distributions to be included. 
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- ssd_fit_bcanz(), ssd_wqg_bc() and ssd_wqg_burrlioz() no longer rescale data by 
default. 

- rescale = TRUE now divides by the geometric mean of the minimum and maximum 
positive finite values as opposed to dividing by the geometric mean of the maximum finite 
value. 

- Replaced column percentage between 0 and 100 with proportion between 0 and 1 in output 
of ssd_hc() 

- Changed delta = 7 to delta = 9.21 to weight of included models no more than 0.01. 

- seeds now allocated to bootstrap samples as opposed to distributions (this results in a speed 
gain when more cores than the number of distributions).  

- Exported dists = ssd_dists_bcanz() argument to ssd_fit_bcanz() to allow other 
packages to modify. 

- Check ... unused where appropriate. 

- ssd_plot_cdf() now includes average with other distributions if average = NA 

- switched from logit_pmix to pmix in mixture distributions 

- lnorm no longer initializes optimization with maximum likelihood estimates 

- Offset starting values for gompertz distribution. 

6.3 Fixes 

- ssd_hc() and ssd_hp() now include parametric column. 

- ssd_hp() now includes wt column. 

6.4  Deprecation 

- Soft-deprecated argument percent = 5 for proportion = 0.05 for ssd_hc() and predict() 
and is_censored(), ssd_plot_cf() and comma_signif(...) now warn deprecated 
unconditionally. 

- plot.fitdists() now defunct. 

- Removed defunct ssd_cfplot(). 

- Removed ccme_data and ccme_boron data set. 

 

7. FURTHER WORK 

7.1 Decisions to finalise through the Technical Advisory Group (TAG) 

7.1.1 Default settings for ssd_fit_bcanz() 

The following default values for ssd_fit_bcanz() have been recommended/adopted by the project 

team and need to be agreed across jurisdictions through the TAG. 

- min_pboot (0.95). 

- min_pmix for the lognormal-lognormal mixture distribution (3/N). 

- minimum sample sizes (7, 10 and 16 for distributions with 2, 3 and 5 parameters respectively). 

- the weighted_sample method to be used as the default CI estimation method. 
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7.1.2 Defaults and level of restrictions for the ANZG Shiny App 

There needs to be a final decision on if the ssd_fit_bcanz() method should underpin the 

customised ANZG Shiny App. Doing so will ensure the recommended methods are used but will also 

remove functionality from the Shiny App if the default settings are enforced. In addition, it will be 

necessary to decide if the default settings for ssd_fit_bcanz() should be consistent with ssd_fit_dists(). 

7.1.3 Weighting 

An additional issue was raised during the project that suggested that using the weighting functionality 

in ssdtools results in unexpected behaviour (https://github.com/bcgov/ssdtools/issues/344) 

whereby attaching increased weight to the left tail of the distribution results in a fitted SSD which is 

shifted to the left of the empirical cdf (Figure 28b). 

Investigations confirmed that the introduction of weights in the log-likelihood function in ssdtools 

has been done correctly, and that the cdf presented in Figure 28(b) is technically correct. However, 

the outcome (including estimated HCx values) is substantially different to what would be obtained if 

weights were implemented using least squares estimation. Least squares estimation results in a more 

 

https://github.com/bcgov/ssdtools/issues/344
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intuitive outcome that more closely aligns with an ecotoxicologist’s expectations with respect to SSD 

weighting. 

Figure 28. Illustration of the SSD weighting issue showing unweighted (a) and weighted (b) fits from ssdtools. 

In general, the desired weighting behaviour would be akin to a weighted regression, that is a ‘best’ fit 

to the data where not all discrepancies between model and data are regarded as having equal 

importance (i.e. the left tail is given greater importance). The likelihood approach adopted for model 

fitting in ssdtools does not do this – it essentially ends up finding the ‘best’ fit to a modified data 

set. The likelihood is essentially the joint probability for the sample, and the idea behind maximum 

likelihood estimation is to estimate the model parameters that maximise this ‘probability’. So, in this 

sense, the likelihood is not providing a measure of discrepancy between the empirical and theoretical 

cdf’s in the same way OLS does, and therefore weighting has different behaviour in these two 

methods. 

Thus, the weighting method as implemented is technically correct, and there may be a case where 

this is in fact desired. Weighting the data in a tail end of a distribution will likely increase the length of 

the tails and could be useful if the species in the tails are of great importance and if there are few data 

points to represent the class of taxa that are found to be sensitive. A decision needs to be made as to 

whether the weighting functionality in ssdtools is retained as an option, is retained but a least-

squares solution rather than a maximum likelihood solution is returned or is removed entirely. 

7.2 Unresolved technical issues 

7.2.1 Instability for large sample sizes 

Testing has shown that the lognormal and some other distribution can exhibit convergence issues 

when sample sizes are very high. Investigations indicated this is because the initial values which are 

estimated from the input data are almost exactly equal to the MLEs, which causes issues with the 

optimization algorithm utilized in ssdtools via TMB that cannot be resolved. The current solution is 

to adjust all initial values slightly prior to passing to the optimization engine, to ensure they are not 

the exact MLE solutions. However, it is important to note that this solution is a temporary fix as it does 

nothing to address the underlying issue. In the case where closed form solutions for ML estimation 

exist it would be possible to implement these for the relevant distributions. This would require 

significant re-working of the ssdtools code base but would result in a more technically correct and 

faster fitting algorithm for relevant distributions. This issue needs to be discussed, along with an 

evaluation of the consequences and time to undertake the task to determine if the required work 

should be funded.  

7.2.2 Convergence reliability when min_pmix is 0 (statistical mixture 

distributions) 

As mentioned in sections 4.1.8 and 5.2, investigations into lognormal-lognormal convergence 

reliability revealed there are issues with the optim solver in ssdtools when estimating the mixing 

parameter (pmix) at values near 0 and 1. As an interim measure we have recommended the lower 

bound be set at 3/N, which has been shown to result in reasonably reliable convergence (Appendix F). 

Setting the lower bound of pmix has implications for the type of statistical mixture that can be 
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modelled. Such restrictions may be appropriate and relevant based on philosophical grounds and the 

topic should be discussed in more detail by the TAG. Theoretically it should be possible to reliably 

obtain convergence even at a bound of 0 and ideally ssdtools should support a min_pmix of 0. 

Better convergence behaviour has been obtained using other solvers outside of ssdtools (Appendix 

F). It may be possible to utilise solvers other than optim within the ssdtools framework, although 

this may be a substantial undertaking and requires extensive validation and testing. 

7.3 Additional features 

The focus of all three phases of this project has been to ensure that ssdtools employs robust, 

efficient, and technically correct methods for SSD modelling. We believe that the many hours of 

detailed technical work accompanied by hundreds of hours of computer modelling, simulation, and 

analysis by several experts over 4+ years has achieved this objective. These efforts will be reflected in 

the forthcoming release of ssdtools 2.0.  

While we are confident that ssdtools 2.0 represents the most comprehensive SSD modelling tool 

available, we have identified several potentially useful enhancements as detailed below. 

7.3.1 Additional distributions 

 A significant advantage of ssdtools is its ability to fit (statistical) mixture models as well as 

its intrinsic use of model-averaging. At the present time, the available distributions in 

ssdtools are (except the Burr III) all two-parameter distributions or mixtures of two, 2-

parameter distributions with a mixing proportion, resulting in 5 parameters. There is an 

obvious omission in this offering – namely the inclusion of three and four parameter 

distributions. Experience to date suggests that because of the invariably small sample sizes 

used in ecotoxicology, mixture models will be heavily penalised due to the high parameter 

count relative to the sample size even when the fit is superior to any single model fit. The 

inclusion of three and four parameter models would provide for greater modelling flexibility 

than two parameter models while reducing the penalty associated with mixture models. 

Possibilities include three-parameter versions of the Weibull, lognormal, log-logisticand 

gamma distributions. Other distributions (available in the ExtDist package) include: 

 Beta_ab – a four parameter beta distribution 

 JohnsonSB – the Johnson SB distribution 

 JohnsonSU – the Johnson SU distribution 

 Normal_sym_trunc_ab – The symmetric truncated normal distribution 

 Normal_trunc_ab – The truncated normal distribution 

Finally, a four-parameter lognormal or log-logistic mixture model could be contemplated in situations 

where it is known (or can reasonably be assumed) for example, that either the meanlog or sdlog 

parameters of the component lognormal distributions are equal. A common meanlog parameter 

would be appropriate where it was thought that the bimodality in the empirical cdf was due only to 

differences in variation while a common sdlog parameter would assume the bimodality was a 

consequence of different locations (i.e. means) only. 
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7.3.2 Bounded distributions 

Currently, all distributions in ssdtools are defined on the positive real line – that is for 

concentrations > 0. When analysing toxicity data obtained from C-R models in which concentration is 

reported as a percentage or fraction between 0 and 1 (for example in whole effluent toxicity tests 

(WET) where concentrations are expressed as a fractional dilution), the use of probability models 

which are unbounded on the right may be sub-optimal. In these cases, a distribution bounded 

between 0 and 1, such as a beta distribution is more consistent with the nature of the data.  

A second possibility where a bounded distribution may be appropriate is where there is an elevated 

background concentration of a contaminant. In this case, an SSD defined for concentrations > b (where 

b is the background concentration) may be preferred although this is probably more conveniently 

handled by simply subtracting b from the concentration data and using an existing two-parameter 

model (assuming b is known or can be otherwise estimated). 

7.3.3 Censoring 

The issue of censoring has been discussed elsewhere in this report. Interval and left censoring is 

implemented in the current CRAN version 1.0.6 of ssdtools whereas right censoring is not. The 

desirability of including right censoring is a matter best left for the technical advisirory group to decide. 

8. NEXT STEPS 

While this report signifies the completion of the set of tasks that were identified as being necessary 

to correct known issues in ssdtools as well as undertaking further mathematical and statistical 

investigations into methodological and performance issues, we have flagged several additional 

refinements and matters requiring decisions by the newly established Technical Advisory Group (TAG). 

In terms of the release of the major ssdtools 2.0 update, the only outstanding matters are: (i) TAG 

review of default and fixed values for ssd_fit_bcanz() and ssd_hc_bcanz() including the use of 

the weighted bootstrap and minimum sample size for log-normal log-normal mixture; and (ii) updating 

of shinyssdtools and user guide and reports associated with the bilingual (English/French) 

interface. 
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Appendices – Detailed Analyses and Results 
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Appendix A - BIAS by dataset for all simulation studies 

 

Figure A- 1. Bias (estimated hazard concentration – true hazard concentration) for 8 simulation datasets based on a Burr 
III distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard concentration values of 1, 5, 
10 and 20 (plot columns) for a range of different methods (see text). Each dataset was simulated 200 times, for each 
dataset, and a minimum of 1000 bootstrap samples were used to estimate confidence intervals. Fitted candidate 
distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm. 
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Figure A- 2. Bias (estimated hazard concentration – true hazard concentration) for 7 simulation datasets based on a log-
normal log-normal mixture distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard 
concentration values of 1, 5, 10 and 20 (plot columns) for a range of different methods (see text). Each dataset was 
simulated 200 times, for each dataset, and a minimum of 100 bootstrap samples were used to estimate confidence 
intervals. Fitted candidate distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm. 
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Figure A- 3Bias (estimated hazard concentration – true hazard concentration) for 7 simulation datasets based on a log-
logistic distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard concentration values 
of 1, 5, 10 and 20 (plot columns) for a range of different methods (see text). Each dataset was simulated 200 times, for 
each dataset, and a minimum of 1000 bootstrap samples were used to estimate confidence intervals. Fitted candidate 
distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm. 
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Appendix B - COVERAGE by dataset for all simulation studies. 

 

Figure B- 1. Coverage (the proportion of times the true HC fell within the 95% confidence interval) for 8 simulation 
datasets based on a Burr III distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard 
concentration values of 1, 5, 10 and 20 (plot columns) for a range of different methods (see text). Each dataset was 
simulated 200 times, for each dataset, and a minimum of 1000 bootstrap samples were used to estimate confidence 
intervals. Fitted candidate distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm 
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Figure B- 2. Coverage (the proportion of times the true HC fell within the 95% confidence interval) for 7 simulation 
datasets based on a log-normal log-normal mixture distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 
32, and 40), for hazard concentration values of 1, 5, 10 and 20 (plot columns) for a range of different methods (see text). 
Each dataset was simulated 200 times, for each dataset, and a minimum of 1000 bootstrap samples were used to 
estimate confidence intervals. Fitted candidate distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm. 
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Figure B- 3. Coverage (the proportion of times the true HC fell within the 95% confidence interval) for 7 simulation 
datasets based on log-logistic distribution (plot rows) across a range of sample sizes (6, 8, 16, 24, 32, and 40), for hazard 
concentration values of 1, 5, 10 and 20 (plot columns) for a range of different methods (see text). Each dataset was 
simulated 200 times, for each dataset, and a minimum of 1000 bootstrap samples were used to estimate confidence 
intervals. Fitted candidate distributions included 'gamma', 'lgumbel', 'llogis', and 'lnorm. 
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Appendix C: Example of the pdf generated through the updated 

Shinny App. 

 



ssdtools BCANZ Report

This report was generated through the ssdtools Shiny app which fits species sensitivity distributions to
concentration data. The app is built from the R package ssdtools, and shares the same functionality.

Toxicant: Boron
Report created: 04/04/2024
Input distributions: gamma, lgumbel, llogis, lnorm, lnorm_lnorm, weibull
ssdtools version: 1.0.6.9010
R version: 4.3.2 (2023-10-31)

1

https://bcgov-env.shinyapps.io/ssdtools
https://cran.r-project.org/web/packages/ssdtools/
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Distribution

average
gamma
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llogis
lnorm
lnorm_lnorm
weibull

Goodness of fit table

dist ad ks cvm aic aicc bic delta weight
gamma 0.440 0.1170 0.0554 238 238 240 0.005 0.357
weibull 0.434 0.1170 0.0542 238 238 240 0.000 0.357
lnorm 0.507 0.1070 0.0703 239 240 242 1.400 0.177
llogis 0.487 0.0994 0.0595 241 241 244 3.390 0.066
lnorm_lnorm 0.320 0.1160 0.0414 240 243 247 4.980 0.030
lgumbel 0.829 0.1580 0.1340 244 245 247 6.560 0.013

Table 1. The goodness of fit statistics. ‘dist’ is the distribution name; ‘ad’ is the Anderson-Darling statistic;
‘ks’ is the Kolmogorov-Smirnov statistic; ‘cvm’ is the Cramer-von Mises statistic; ‘aic’ is the Akaike’s
Information Criterion; ‘aicc’ is the Akaike’s Information Criterion corrected for sample size; ‘bic’ is the
Bayesian Information Criterion; ‘delta’ is the Information Criterion differences; ‘weight’ is the Information
Criterion weights. ‘delta’ and ‘weight’ are based on ‘aic’ for censored data and ‘aicc’ for non-censored data.
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Model averaged fit
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Estimated hazardous/protective concentration

HCx PCx est se lcl ucl nboot pboot
1 99 0.267 0.404 0.031 1.523 1000 1
5 95 1.257 0.804 0.324 3.536 1000 1

10 90 2.382 1.167 0.878 5.576 1000 1
20 80 4.810 1.814 2.265 9.585 1000 1

Table 2. The estimated hazardous/protective concentrations. ‘HCx’ is the % species affected; ‘PCx’ is the
% species protected; ‘est’ is the model-averaged estimate of the concentration; ‘se’ is the bootstrap based
standard error of the estimate; ‘lcl’ and ‘ucl’ are the bootstrapped-based lower and upper 95% confidence
limits; ‘nboot’ is the number of bootstrap samples; ‘pboot’ is the proportion of bootstrap samples that
converged. The model-averaged estimate(s) are calculated by treating the distributions as a single mixture
distribution. Distributions with an absolute AIC difference greater than a delta of by default 9.21 have
considerably less support (weight < 0.01) and are excluded prior to bootstrapping.

3



Input data

Chemical Species Conc Group Units
Boron Oncorhynchus mykiss 2.1 Fish mg/L
Boron Ictalurus punctatus 2.4 Fish mg/L
Boron Micropterus salmoides 4.1 Fish mg/L
Boron Brachydanio rerio 10.0 Fish mg/L
Boron Carassius auratus 15.6 Fish mg/L
Boron Pimephales promelas 18.3 Fish mg/L
Boron Daphnia magna 6.0 Invertebrate mg/L
Boron Opercularia bimarginata 10.0 Invertebrate mg/L
Boron Ceriodaphnia dubia 13.4 Invertebrate mg/L
Boron Entosiphon sulcatum 15.0 Invertebrate mg/L
Boron Chironomus decorus 20.0 Invertebrate mg/L
Boron Paramecium caudatum 20.0 Invertebrate mg/L
Boron Rana pipiens 20.4 Amphibian mg/L
Boron Bufo fowleri 48.6 Amphibian mg/L
Boron Bufo americanus 50.0 Amphibian mg/L
Boron Ambystoma jeffersonianum 70.7 Amphibian mg/L
Boron Ambystoma maculatum 70.7 Amphibian mg/L
Boron Rana sylvatica 70.7 Amphibian mg/L
Boron Elodea canadensis 1.0 Plant mg/L
Boron Spirodella polyrrhiza 1.8 Plant mg/L
Boron Chlorella pyrenoidosa 2.0 Plant mg/L
Boron Phragmites australis 4.0 Plant mg/L
Boron Chlorella vulgaris 5.2 Plant mg/L
Boron Selenastrum capricornutum 12.3 Plant mg/L
Boron Scenedesmus subspicatus 30.0 Plant mg/L
Boron Myriophyllum spicatum 34.2 Plant mg/L
Boron Anacystis nidulans 50.0 Plant mg/L
Boron Lemna minor 60.0 Plant mg/L

4
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Appendix D : Gompertz stability issues 

Prior testing has shown that the Gompertz distribution can have poor convergence behaviour (see 

Figure 32, Fox et al 2022). Further, even with the same dataset, ssdtools can return different 

parameter estimates based on different seeds, which suggests a very high degree of instability, even 

where the distribution has successfully fitted (see https://github.com/bcgov/ssdtools/issues/223). 

Here we investigate issues with the Gompertz distribution, to identify sources of instability. 

Investigation 1:  

We extracted datasets from Simulation study 1 and used this to investigate convergence issues and 

stability in the Gompertz distribution. 

Examining the first dataset we get: 

x <- failed_data_allN[[1]]$failed.gompertz[, 3] 

data <- data.frame(Conc = x)  

fit <- ssd_fit_dists(data, left = 'Conc', dists = use.dists, 

at_boundary_ok=TRUE, rescale = FALSE) 

  

 

Comment: Nothing leaps off the page with the histogram above in terms of extremeness, dispersion 

etc. In fact, looks decidedly ‘normal’. 

  

As we already know, ssdtools fails to fit a Gompertz to this data: 

Unscaled data - ssdtools 

  
> ssd_fit_dists(data=data,dists = "gompertz") 
Error: 
! All distributions failed to fit. 
Run `rlang::last_trace()` to see where the error occurred. 
Warning message: 

https://github.com/bcgov/ssdtools/issues/223
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Distribution 'gompertz' failed to fit (try rescaling data): Error in optim
(par, fn, gr, method = method, lower = lower, upper = upper,  :  
L-BFGS-B needs finite values of 'fn' 

 

But, does succeed if rescaling used: 

Scaled data – ssdtools 
  

> m.ssd<-ssd_fit_dists(data=data,dists = "gompertz",rescale=TRUE) 
> summary(m.ssd) 
Distribution 'gompertz' 
location 9.84102e-10 
shape 24.071 

  
Parameters estimated from 1000 rows of rescaled (39.93) data. 

  
 dist        ad    ks   cvm    aic   aicc    bic delta weight 

  <chr>    <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl> 
 gompertz   Inf 0.144  6.88 -3575. -3575. -3565.     0      1 

  

  

Comment: The location parameter is essentially zero which is a little curious. The AD test statistic is 

Inf which I suspect may be due to the evaluation of the Gompertz cdfreturning Inf values. The plot 

below shows that the fit is not good: 

  

 

  

Comparison with fitdistrplus 

We can use ssdtool’s Gompertz distribution with fitdistrplus to make a direct comparison (again 

using unscaled data): 

  

> m.fd<-fitdist(data=data$Conc,distr="gompertz",start = list(llocation=0,l
shape=0)) 
> summary(m.fd) 
Fitting of the distribution ' gompertz ' by maximum likelihood  
Parameters :  
           estimate   Std. Error 
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llocation  0.540625 0.0019897906 
lshape    -2.287500 0.0005497542 
Loglikelihood:  -875505.7   AIC:  1751015   BIC:  1751025  
Correlation matrix: 
           llocation     lshape 
llocation  1.0000000 -0.8443869 
lshape    -0.8443869  1.0000000 

  

Comment: This does work without the need to rescale which suggests fitdistrplus may have a better 

algorithm for fitting and/or selection of initial values. However, the fit is absolute rubbish: 

 

  

Repeating the fitdistrplus calculations with scaled data (and ssdtool’s dgompertz distribution and 

same scaling value) 

> summary(m.fd) 
Fitting of the distribution ' gompertz ' by maximum likelihood  
Parameters :  

            estimate Std. Error 
llocation -20.739903 0.42578237 
lshape      3.181094 0.01804378 
Loglikelihood:  1789.628   AIC:  -3575.257   BIC:  -3565.441  
Correlation matrix: 
           llocation     lshape 
llocation  1.0000000 -0.9972379 
lshape    -0.9972379  1.0000000 
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Comment: This does work and the fit is much better. But – looking at the estimates above we see 

llocation = -20.739903 => location = 9.835005e-10 and lshape = 3.181094 => shape =24.07308 which 

is identical to ssdtools parameter estimates! So why is the fit much better – at least visually? NOTE: 

AIC from fitdistrplus and ssdtools are identical (= -3575.257) – the plot thickens! 

The apparent better fit from fitdistrplus referred to above was just due to the compressed plot. The 

cdf plot from ssdtools (upper plot) and fitdistrplus (lower plot) are the same for the scaled data case: 

A) Fit with ssdtools 

 
 
 

B) Fit with fitdistrplus 
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The log-likelihood surface and Cullen-Frey plots 

The plot below shows the log-likelihood surface from the fitdistrplus fit to the scaled data. The ‘x’ 

mark is the MLE. 

 

What’s immediately apparent from this plot is that the MLE lies on a ridge meaning there is an 

infinite number of equally plausible estimates of the shape and scale parameters. 

If we look at the Cullen-Frey plot we see that the data we’re using falls outside any of the fitdistrplus 

distributions (indicated by the solid blue point at about (0,5.5). 
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This prompted an examination of the Cullen-Frey plot for the Gompertz distribution – see below 

(note, horizontal axis is skewness rather than skewness^2). The blue band represents feasible 

skewness-kurtosis combinations for the Gompertz distribution. The orange sold point represents our 

sample (the location of this point is scale-invariant).  

 

So, what the plot above suggests is that it’s impossible to match the skewness and kurtosis of the 

data with any Gompertz distribution. Now, that may not be a ‘show-stopper’ in terms of ML 

estimation, but it is also instructive to see where our sample lies on a mean-variance plot for the 

Gompertz family:  
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In the plot above, the blue band is again all feasible combinations of mean and variance using a 

Gompertz distribution. The orange point is the unscaled data. Note, that this plot does depend on 

scale as indicated by the magenta point which is the data multiplied by a big scale factor and the 

blue point which is the data divided by a big scale factor. The connecting line is the locus of the 

result of applying any scaling factor. 

So this is revealing – we know that we can’t match the third and fourth moments of our data using a 

Gompertz distribution and the plot above suggests that we will struggle to match the first two 

moments. Further, applying a large multiplicative scaling factor takes us further away from a feasible 

position on the mean-variance plot, while applying a very small (<<1) scale factor brings us closer to 

a feasible position on this plot. 

On the basis of the above, it suggests that this this is not necessary a  ‘convergence issue’– it’s simply 

an artefact of trying to fit a model that is incapable of representing the characteristics of the 

particular data set – we’re essentially trying to force a square peg into a round hole! 

These investigations suggest that there are inherent difficulties with fitting the gomptertz 

distribution to some datasets that occur within ssdtools as well as alternative packages, such as 

fitdistrplus. This is related to an extremley flat likelihood profile, meaning there are an infinite 

number of equally plausible estimates.  

This issue appears to associated with the fact that the testing data do not fit within plausible 

parameter combinations of the gompertz distribution. It may be impossible in such cases to ever 

resolve convergence issues.  

Regardless, the gompertz distribution may remain a useful distribution in some cases, particularly if 

it represents completely different distribuional shapes relative to the others in the model set.  
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Failure to converge in the initial model set would simply suggest it is a poor model for that data. 

Where the gompterz fits well, it may be worth considering providing pboot values are high in 

confidence interval estimation.  

To examine if convergence is reliable once a Gompertz distribution has been fit, we extracted 

datasets from Simulation study 1 and examined pboot values for all fits that were able to return a 

successful fit to the Gompertz distribution. We found that there were highly variable outcomes for 

pboot for successfully fit Gompertz models. Values of pboot for extremely large sample sizes 

(N=1,000) were always below 0.95. For all sample sizes <128 median pboot was > 0.95. 

 

8.1 Conclusions:  

However, in all cases there  

To further explore the reprex highlighting Gompertz instability provided in the ssdtools github issues 

page https://github.com/bcgov/ssdtools/issues/223 we refit the example data using a range of 

different seeds, through the following code: 

x <- c(3.15284072848962, 1.77947821504531, 0.507778085984185, 
1.650387414067, 1.00725113964435, 7.04244885481452, 
1.32336941144339, 1.51533791792454) 

test_issues_dat_seed <- lapply(1:100, FUN = function(s){ 

   set.seed(s) 

fit <- try(ssd_fit_dists(data, left = 'Conc', dists = "gompertz", 
rescale = FALSE), silent = TRUE) 

}) 

Of these 100 seeds 31 were able to return a valid fit, with the remaining 69 failing. We extracted HC 

estimates from the successful fits via: 

HC_vals <- sapply(test_issues_dat_seed, FUN = function(g){ 

   if(class(g)=="fitdists"){return(ssd_hc(g)$est)} 

}) 

The estimated HC5 values ranged from 0.115 to 0.376 across the 31 successful fits, with a median of 

0.134. This represents a 1.9 fold difference in the HC estimate, from a single dataset based entirely 

on differences among seeds. Such behaviour is clearly problematic in the context of scientific 

reproducibility, and suggests that if the gompertz were implemented it would be necessary as a 

minimum to set a seed to obtain consistent results.  

https://github.com/bcgov/ssdtools/issues/223
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Appendix E : Instability when N is large 

Prior testing has shown that the lognormal distribution can surprisingly show convergence issues 

when sample sizes are very high (see Figure 32, Fox et al 2022). For example, from Simulation study 

1 the lognormal distribution failed to fit up to 14% of the time when N=1,000 for data simulated 

from an Inverse Weibull, log logistic and lognormal distributions (see Figure 32, Fox et al 2022). Here 

we describe our investigations this instability.  

Consider the following data:  

 

  

The summary statistics for the n=1,000 data values are: 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  52.31  131.74  143.19  140.76  152.02  187.29 

  Skewness = -0.8189654;  Kurtosis = 4.50964 

 

The mle’s for the fitted lognormal distribution are easily obtained as the mean and (biased) standard 

deviation of the log-transformed data respectively. i.e 4.9 59ˆ 388   and 17. 78ˆ 105  . 

However, ssdtools fails to fit the lognormal distribution to this data: 

> str(data)  # confirm that we are using a properly formatted data frame 
'data.frame': 1000 obs. of  1 variable: 
 $ Conc: num  142 146 146 142 149 ... 
> ssd_fit_dists(data=data,dists="lnorm") 
Error: 
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! All distributions failed to fit. 
Run `rlang::last_trace()` to see where the error occurred. 
 
Warning message: 
Distribution 'lnorm' failed to converge (try rescaling data): ERROR: ABN
ORMAL_TERMINATION_IN_LNSRCH.  

BUT, if we use a smaller sample randomly selected from the n=1,000 data values, ssdtools 

successfully fits the lognormal distribution: 

 
ssd_fit_dists(data=data.frame(Conc=sample(data$Conc,8)),dists="lnorm") 
Distribution 'lnorm' 
  meanlog 4.91451 
  sdlog 0.150053 
 
Parameters estimated from 8 rows of data. 
 
ssd_fit_dists(data=data.frame(Conc=sample(data$Conc,32)),dists="lnorm") 
Distribution 'lnorm' 
  meanlog 4.93776 
  sdlog 0.137802 
 
Parameters estimated from 32 rows of data. 
 
ssd_fit_dists(data=data.frame(Conc=sample(data$Conc,320)),dists="lnorm") 
Distribution 'lnorm' 
  meanlog 4.93646 
  sdlog 0.131214 
 
Parameters estimated from 320 rows of data. 
 
ssd_fit_dists(data=data.frame(Conc=sample(data$Conc,640)),dists="lnorm") 
Distribution 'lnorm' 
  meanlog 4.93629 
  sdlog 0.128506 
 
Parameters estimated from 640 rows of data. 
 

 But, most bizarrely if we simply permute the rows of the data frame, ssdtools 

works: 

ssd_fit_dists(data=data.frame(Conc=data[permute::shuffle(1000),]),dists=
"lnorm") 
Distribution 'lnorm' 
  meanlog 4.93886 
  sdlog 0.132416 
 
Parameters estimated from 1000 rows of data. 
 

Note: fitdistrplus has no difficulties. For example, we can fit the lognormal distribution using 

the optim() function (rather than computing meanlog and sdlog as follows: 

> mledist(data$Conc,"lnorm") # uses the default Nelder-Mead method 
$estimate 
  meanlog     sdlog  
4.9388590 0.1324164  
 
$convergence 
[1] 0 
 
$value 
[1] 4335.994 
 
 
$hessian 
         meanlog    sdlog 
meanlog 57031.69      0.0 
 
 
 



Page | 87 
 

sdlog       0.00 114121.9 
 
$optim.function 
[1] "optim" 
 
$optim.method 
[1] "Nelder-Mead" 
 
$fix.arg 
NULL 
 
$fix.arg.fun 
NULL 
 
$weights 
NULL 
 
$counts 
function gradient  
      59       NA  
 
$optim.message 
NULL 
 
$loglik 
[1] -4335.994 

 

Further investigation into this issue revealed that the non-convergence of the lnorm for large 

samples sizes (e.g. 1,000) is because in this particular case the initial values which are estimated 

from the input data are almost exactly equal to the MLEs. This causes issues with the specific 

optimization algorithm utilised in ssdtools via TMB. The source of the problem appears to come from 

some deep-seated issue in the old (Fortran 77) solvers being used by TMB. The current solution is to 

adjust all initial values as prior to passing to the optimization engine, to ensure they are not the 

exact MLE solutions. 

This solution should be considered only temporary and does nothing to address the underlying issue. 

In the case where closed form solutions for ML estimation exist it would be possible to implement 

these for the relevant distributions using binary logic that by-passes the solver and just returns the 

exact values. Such a solution would require significant re-working of the ssdtools code base and is 

beyond the scope of the present work. The temporary work-around that has been implemented is 

technically unsatisfactory, but nevertheless does ensure reliable fits with accurate MLE estimates 

and can be adopted safely in the interim. 

Re-testing of the Simulation data 1 showed that the interim solution returns much higher 

convergence proportions for the lognormal distribution at larger samples sizes. Across all 2,632 

datasets in the simulation study there is now 97.8% convergence at sample sizes of 1,000, 0.99% 

convergence for sample sizes of 64, 128 and complete convergence of all smaller sample sizes. 

8 16 32 64 128 1000 

1 1 1 0.990502 0.985562 0.97758 
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Appendix F : lnorm-lnorm stability investigations 

Prior testing showed that the ssdtools implementation for fitting lognormal-lognromal mixture 

distributions can have poor convergence behaviour (see Figure 32, Fox et al 2022). This behaviour 

can result in low pboot values being returned during bootstrapping of some distributions (see the 

related issue at https://github.com/bcgov/ssdtools/issues/295). To ensure reasonable behaviour 

ssdtools has lowered the pboot threshold for the bcanz function to ensure the lognormal-lognormal 

mixture distiribution rreliably eturns confidence intervals. However, lowering pboot has the 

potential to intoduce bias in the HC confidence interval estimation if the ‘failed’ bootstrap samples 

are not representative of the parent distribution. Here we examine the stability of the lnorm-lnorm 

mixture distribution using a range of testing data, and evaluate different strategies for improving 

convergence so this mixture distribution can be included with confidence in the default set when the 

minimum sample size requirements are met. 

Investigating instability issues 

> x<-failed_data_allN[[1]]$failed.lnorm_lnorm[,1] 

 

Figure F- 1. Histogram of example dataset 

> summary(x) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  10.75   11.36   11.49   11.50   11.64   12.83  
 
> skewness(x) 
[1] 0.1429461 
> kurtosis(x) 
[1] 4.369028 
 
Unscaled data - ssdtools 
> fit <- ssd_fit_dists(data=data.frame(Conc=x), left = 'Conc', dists = 'lno
rm_lnorm', at_boundary_ok=TRUE, rescale = FALSE) 
 
Error: 
! All distributions failed to fit. 
Run `rlang::last_trace()` to see where the error occurred. 
Warning message: 
Distribution 'lnorm_lnorm' failed to fit (try rescaling data): Error in opt
im(par, fn, gr, method = method, lower = lower, upper = upper,  :  
  L-BFGS-B needs finite values of 'fn' 

 

https://github.com/bcgov/ssdtools/issues/295
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Unscaled data – fitdistrplus 

(hand-coded dlnorm_lnorm) 

> fitdist(data=x,distr = "lnln",start=list(lm1=2.5,ls1=-1.5,lm2=2,ls2=-1.5,
p=0.99)) 
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = da
ta,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     
lower = lower, upper = upper, ...): function cannot be evaluated at initial 
parameters> 
Error in fitdist(data = x, distr = "lnln", start = list(lm1 = 2.5, ls1 = -1
.5,  :  
  the function mle failed to estimate the parameters,  
                with the error code 100 
 
> fitdist(data=x,distr = "lnln",start=list(lm1=2.5,ls1=-1.5,lm2=2,ls2=0.000
1,p=0.99)) 
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = da
ta,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     
lower = lower, upper = upper, ...): function cannot be evaluated at initial 
parameters> 
Error in fitdist(data = x, distr = "lnln", start = list(lm1 = 2.5, ls1 = -1
.5,  :  
  the function mle failed to estimate the parameters,  
                with the error code 100 

 

Scaled data – ssdtools 

> ssd_fit_dists(data=data.frame(Conc=scale(x,center = FALSE,scale=TRUE)),d
ists='lnorm_lnorm') 
Error: 
! All distributions failed to fit. 
Run `rlang::last_trace()` to see where the error occurred. 
Warning message: 
Distribution 'lnorm_lnorm' failed to fit (try rescaling data): Error in op
tim(par, fn, gr, method = method, lower = lower, upper = upper,  :  
  L-BFGS-B needs finite values of 'fn' 
.  
> ssd_fit_dists(data=data.frame(Conc=scale(x,center = FALSE,scale=TRUE)),d
ists='lnorm_lnorm',rescale = TRUE) 
Error: 
! All distributions failed to fit. 
Run `rlang::last_trace()` to see where the error occurred. 
Warning message: 
Distribution 'lnorm_lnorm' failed to fit: Error in optim(par, fn, gr, meth
od = method, lower = lower, upper = upper,  :  
  L-BFGS-B needs finite values of 'fn' 
.  

 

Scaled data – fitdistrplus 

> fitdist(data=as.numeric(scale(x,center = FALSE,scale=TRUE)),distr = "lnl
n",start=list(lm1=2.5,ls1=-1.5,lm2=2,ls2=0.0001,p=0.99)) 
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = d
ata,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = met
h,     lower = lower, upper = upper, ...): function cannot be evaluated at 
initial parameters> 
Error in fitdist(data = as.numeric(scale(x, center = FALSE, scale = TRUE))
,  :  
  the function mle failed to estimate the parameters,  
                with the error code 100 
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Unscaled data – alternative solvers 

 

> optimx(par=c(2,0.1,1,1,0.9),llnln,lower=c(-Inf,0,-Inf,0,0),upper=c(Inf,Inf,Inf,In
f,1)) 
               p1        p2       p3       p4        p5     value fevals gevals nit
er convcode  kkt1 kkt2 xtime 
L-BFGS-B 2.441941 0.0188725 1.047126 1.025552 0.9987057 -98.60032     77     77    
NA       52 FALSE   NA   0.2 
There were 23 warnings (use warnings() to see them) 
> optimx(par=c(2,0.1,1,1,0.9),llnln,lower=c(-Inf,0,-Inf,0,0),upper=c(Inf,Inf,Inf,In
f,1),control=list(all.methods=TRUE)) 
 

p1 p2 p3 p4 p5 value fevals gevals niter convcode kkt1 kkt2 xtime 

L-

BFGS-B 2.44 0.02 1.05 1.03 1.00 -98.60 77 77 NA 52 FALSE NA 0.11 

nlminb 2.44 0.02 2.09 1.14 1.00 -99.55 166 1154 150 1 FALSE NA 0.09 

spg 2.54 0.00 2.44 0.02 0.00 -94.88 396 NA 363 0 NA NA 0.24 

Rcgmin 2.17 1.58 2.61 0.16 0.00 2067.25 41 17 NA 0 FALSE FALSE 0 

Rvmmin 2.15 3.74 2.44 0.03 0.00 -12.93 41 21 NA 21 FALSE FALSE 0 

bobyqa 2.51 0.18 1.10 1.02 0.92 1796.39 28 NA NA 0 FALSE FALSE 0 

nmkb 2.44 0.02 2.68 0.34 1.00 -100.40 796 NA NA 0 FALSE NA 0.19 

hjkb 2.44 0.04 2.44 0.02 0.04 -103.31 2928 NA 19 0 FALSE TRUE 0.33 

 
Comment: As can be seen, there are several alternatives to optim() that do successfully  converge (including optim with me

thod =”L-BFGS-B”): 
 
 
> optim(par=c(2,0.1,1,1,0.9),llnln,lower=c(-Inf,0,-Inf,0,0),upper=c(Inf,Inf,Inf,Inf
,1),method="L-BFGS-B") 
$par 
[1] 2.4419412 0.0188725 1.0471260 1.0255519 0.9987057 
 
$value 
[1] -98.60032 
 
$counts 
function gradient  
      77       77  
 
$convergence 
[1] 52 
 
$message 
[1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH" 

 
Comment: There’s nothing further about this error message. A search online doesn’t provide anything particularly revealin
g. I suspet it’s a numerical issue associated with gradient Computations: 

convergence  52 

indicates an error from the "L-BFGS-B" method; see component message for 

further details. 
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Figure F- 2. This is a plot of the ecdf (black) with 2 fitted distributions: with parameters estimated from: L-BFGS-B (red); 
and hjkb (blue). The fit is good because the mixing parameter is ~ 0 => a single log-normal.  

It is clear from this investigation that there are are convergence issues with the log-normal log-

normal mixture distribution where the mixing parameter been estimated is near 1 (a unimodal 

distribution), that are common to both ssdtools and fitdistrplus. These issues are related to the 

optimisation algorithm being used. While there are alternative solvers that do provide a valid 

solution these cannot currently be implemented within ssdtools as a means of resolving this issue. 

Comparing bootstrapping methods 

Note that the primary purpose of improving stability of the fitting algorithim for the lognormal-

lognormal mixture distribution is to ensure sucessful bootstrap sampling and maximize the  pboot 

to minimise the possibility of potential bias in HC and HP confidence interval estimates. Failure of 

the lognormal-lognormal mixture distribution to fit initially to the original data is of less concern, 

because the mixture will simply be left out of the model set. In that case, failure to converge simply 

suggests that the mixture distribution is inappropriate for these data. 

Low bootstrap convergence was identified as the source of the reason the current Shiny App fails to 

returnconfidence intervals for the testing dataset, boron (see 
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https://github.com/bcgov/ssdtools/issues/295). The revised version of ssdtools implements two 

alternative bootstrapping methods (See Milestone Report 1), the rmulti method, which draws a 

random sample from the model set as a mixture distribution, and the weighted sample method that 

draws random samples from the individual distributions and combines these in proportion to their 

AICc weights.  

We examined how pboot compares across the two bootstrapping methods using the CCME boron 

dataset as a case study. We found that there was perfect convergence (pboot=1) when using the 

weighted sample method, and a pboot of 0.896 when using the rmulti method. Investigation into 

the distributions that failed to converge suggest that these are almost entirely based on failure of 

the lognormal-lognormal mixture to converge. This provides further support for the idea that 

convergence issues with the lognormal lognormal mixture are associated with failure to fit essential 

unimodal datasets. For the weighted sample method, bootstrapping of the lognormal-lognormal 

distribution within the set is done only using data frame from that same mixture distribution, which 

likely explains the higher convergence rate using that method. Given that the wieghted bootstrap 

sample method is faster than the rmulti method and appears to return similar confidence intervals, 

there may be no critical need to resolve convergence issues for the lognormal-lognormal distribution 

when applied to univariate data. 

Coefficient of bimodality 

The source of convergence issues associated with the lognormal-lognormal mixture are likely in part 

associated with attempts to fit a unimodal distiribution. The team discussed the possibility of pre-

screening data for evidence of bi-modality using a coefficient of bimodality, as is currently outlined 

in Warne et al. 2018.   

From Wikipedia (https://en.wikipedia.org/wiki/Multimodal_distribution ) 

 

This is what’s recommended in Warne et al. 

https://github.com/bcgov/ssdtools/issues/295
https://en.wikipedia.org/wiki/Multimodal_distribution
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Histogram of all 463 data sets of n=1,000 
bc<-function(dat){ 

  x<-dat 

  n<-length(x) 

  coef<-(skewness(x)^2+1)/((kurtosis(x)-3)+(3*(n-1)^2)/(n-2)/(n-3)) 

  return(coef) 

} 

 

 

Figure F- 3. Example data sets for samples to failed to converge for a lognormal-lognormal mixture distribution for which 
bc > 0.9 
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Figure F- 4. Example data sets for samples to failed to converge for a lognormal-lognormal mixture distribution for which 
bc 0.4 < bc < 0.5 
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Figure F- 5. Example data sets for samples to failed to converge for a lognormal-lognormal mixture distribution for which 
bc >  0.2 < bc < 0.3 

Constraining pmix (the mixing proportion) 

The ssdtools package on CRAN currently models the mixing parameter (pmix) on the logit scale, 

which allows  0-1 bounded parameters to be appropriately constrained without requiring an explicit 

specification of parameter constraints since values of the logit-transformed proportion are 

unconstrained.. Where data do not display any bi- or multi-modality, this may result in an attempt to 

estimate extremely small (near 0) or large (near infinity) values of pmix, because for a unimodal 

dataset pmix is theoretically 1. As the estimate of pmix tends to 1, the value of logit(pmix) will tend 

to infinity and this can result in  unstable behaviour.  We believe this is the reason behind the  

lnorm-lnorm convergence issues. In the first instance the team has tested an implemntation of 

ssdtools that estimates pmix on it’s natural scale by requiring pmix to satisfy the constraint 

0 1pmix   . In the bootstrap setting, it is important to allow the lognormal lognormal mixture to 

return a successfully converged fit, even when the parameter estimate is at these bounds, because 0 

or 1 are the true theoretical pmix values for a univariate distribution. The current version of ssdtools 

allows this by setting at_boundary_ok=TRUE.  

In addition to fixing the bounds of pmix to 0 and 1 on the natural scale, we also examined setting 

varying bounds for min_pmix, based on the proportion that can theoretically be supported by the 

total sample size of the input data (N). The logic here is that if the mixture distribution is to be 
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supported, this must necessarily mean that at least 1, or some, of the input data must be from each 

of the component distributions. In that case, it may be reasonable to set bounds based on the 

minimun proportions of the input sample data. In our testing, we set the min_pmix bound based on 

1/N, 2/N and 3/N to examine convergence reliability across a range of minimum required data for 

each component distribution. Note that setting the lower bound as a propotion in ssdtools also sets 

an equivalent assumed upper bound (ie (N-1)/N, (N-2)/N and (N-3)/N). 

Testing lognormal-lognormal convergence using data from Simulation study 1 

We explored the effect of bounding min_pmix on convergence reliability for the lognormal mixture 

by attempting to re-fit all datasets that failed to fit the datasets in sumulation study 1 (see further 

details in Fox et al. 2022). We found that re-factoring the pmix parameter so it was no longer on the 

logit scale and instead bounded to 0-1 did slightly improve convergence of the lognormal-lognormal 

mixture distribution (Figure F-6). This improvement was greatest for larger samples sizes and 

represents a 30-40% higher rate of convergence  for the datasets from simulation study 1 (N = 16 

and 32,Figure F-6).  

In addition to the refactoring such that min_pmix is bounded to 0 and 1, there was also substantial 

improvements in convergence when the min_pmix is bounded proportional to minimum 

representations of data within each distribution (Figure F-6). This gain was very minor for a 

min_pmix of 1/N (at least 1 datapoint in each component distribution) but jumped substantially for 

2/N (at least 2 datapoints in each component distribution) and even further for 3/N (at least 3 

datapoint3 in each component distribution, Figure F-6). For a min_pmix bound of 3/N there was 70-

80% convergence for previoualy failed datasets, even at relatively small sample sizes (Figure F-6). 

When applied to all the original datasets in Simulation study 1, convergence rates in the case where 

min_pmix is bounded to 3/N exceeded 90% even for relatively small sample sizes, which is quite high 

given these simulated data are all from known unimodal distributions. 

 

Figure F- 6. Proportion of successfully fitted data sets based on Simulation study 1 that failed to fit the lognormal 
lognormal mixture using the current implementation of pmix on the logit scale with no bounds. Four different pmix 
bounds were examined including 0-1 bounded, and lower bounded at 1/N, 2/N and 3/N, where N is the test data size. 
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Figure F- 7. Proportion of successfully fitted data sets based on all Simulation study 1 data sets (See Fox et al. 2022 for 
more details). Four different pmix bounds were examined including 0-1 bounded, and lower bounded at 1/N, 2/N and 
3/N, where N is the test data size and successful convergence included bounded distributions (computable = FALSE, 
at_boundary_ok = TRUE). Also shown are results for the default settings (computable = TRUE, at_boundary_ok = FALSE, 
min_pmix = 0). Horizonal dotted lines indicate the range of convergence observed in the original study (see Figure 32, 
Fox et al 2021) and the horizontal dashed red line indicates 90% convergence. 

Testing lognormal-lognormal mixture convergence the using failed bootstrap samples. 

One of the primary motivations for improving convergence in the lognormal-lognormal distribution 

is to return a high pboot estimate for the bootstrapping procedure to ensure the resulting 

confidence intervals remain unbiased. To test the effectiveness of different min_pmix bounds on 

convergence success in this case, we examined the effect of different bounding scenarios on 

convergence probabilities for a sample of 11,046 datasets that failed to result in a valid lognormal-

lognormal fit using the default 0-1 bounds.  The bounding scenarios incuded re-fitting using the 

default 0-1 bounds and min_pmix settings of 1/N, 2/N and 3/N.  

The results of this test clearly indicate that there is a substantial gain in convergence probability 

when the minimum allowed mixing proportion corresponds to at least 2 data points (proportion 

converged = 0.61, Table 7). There was an even great gain, representing near perfect convergence in 

this example (proportion converged = 0.99) for a mixing proportion corresponding to at least 3 data 

points (Table 7). 

Table 7. The proportion of successfully converged datasets for a range of min_pmix settings. 

min_pmix  Proportion 

0 0.01 

1/N 0.09 

2/N 0.61 

3/N 0.99 
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Lognormal-lognormal convergence for true mixtures 

All of the tests above have looked at convergence failure for data that come largely from unimodal 

distributions. We simulated data from a true lognormal-lognormal mixture distribution to verify 

convergence rates and explore the effect of bounding min_pmix at different proportions of the total 

sample size.  

This was achieved by randomly generating data using the rlorm function in R. Data were generated 

from two distributions and subsequentely pooled. Once distribution had a meanlog of 0 and sdlog of 

1, and the other a meanlog of 5 and sdlog of 1. We generated 16 data points (N) from each 

distirbution with different known proportions (actual pmix values), ranging from 1/16 (only 1 data 

point from distribution one) to 15/16 (only 1 data point from distribution 2) and including all mixing 

proportions in between. These data were fitted using ssdtools allowing valid “convergence” to 

include fits where the pmix estimate is at the bounds (at_bounds_ok = TRUE), as well as excluding 

bounded fits (at_bounds_ok = FALSE). 

Four different bounding scenarios were considered, including the default 0-1 bounds, and min_pmix 

settings of 1/N, 2/N and 3/N.  

The exercise was repeated for a sample size (N) of 32, although in this case the simulated mixture 

data range fom a minimum of 2 data points from distribution one up to 2 data points from 

distribution 2. 

 

 

Figure F- 8. Proportion of successfully converged lognormal-lognormal mixture fits as a function of the actual mixing 
proportion for a true lognormal mixture. Data were generated from two lognormal distributions (meanlog = 0 and sdlog 
= 1 meanlog = 5 and sdlog = 1), with actual true mixing proportions ranging from 1/16 to 15/16. Plot rows show data for 
two different sample sizes (N), and plot columns indicate the applied min_pmix boundary (the default 0-1 bounds, and 
min_pmix settings of 1/N, 2/N and 3/N). Line colours indicate the outcome where the pmix estimate is allowed at the 
bounds (at_bounds_ok = TRUE), as well as excluding bounded fits (at_bounds_ok = FALSE). Blue vertical lines show the 
position of the upper and lower bounds imposed by min_pmix. 

This simulation study shows that for a true mixture distribution with actual pmix values within the 

range of 0.2-0.8, and where convergence is considered successful when the estimated pmix values 

are allowed at the bounds (at_bounds_ok = TRUE), convergence rates are near 1 (Figure F-8). This is 
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true regardless of of the min_pmix bounds that are imposed (Figure F-8). Outside this range of actual 

mixing values convergence of a true mixure can be quite low when no lower and upper bounds are 

imposed (min_pmix = 0, m0 Figure F-8). Convergence for distributions at the extremes improves as 

min_pmix is increase from 1/N to 3/N, providing convergence is considered successful if the 

estimated pmix is at those boundaries (blue line, all plots, Figure F-8)). Convergence actually declines 

with increasing imposed min_pmix values if fits where the estimated pmix is at the boundaries are 

excluded (red line, all plots, Figure F-8)). 

Discussion and recommendations 

Re-factoring the ssdtools code such that the pmix paramater of the lognormal-lognormal mixture 

distribution resulted in a 20% improvement in convergence success and should definitely be adopted 

in the revision of ssdtools before submission to CRAN. 

Setting the lower bound of the mixing proportion relative to the sample size of the input data can 

also result in substantial improvements to convergence reliability. There is little gain in setting the 

bound at 1/N, but significant gains with 2/N and the best performance is where min_pmix is set to 

3/N. Convergence of the univariate distirbutions from Simulation study 1 was >90%, and ths was 

99% for a large sample of previously failed boostrap datasets based on the boron example from 

ssddata.  The setting also results in near perfect convergence for true mixture distributions, 

providing valid fits include those with extimated pmix values at the bounds (at_boundary_ok). 
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Appendix G – Updated ssdtools help documentation 

ssd_hc {ssdtools} R Documentation 

Hazard Concentrations for Species Sensitivity Distributions 

Description 

Calculates concentration(s) with bootstrap confidence intervals that protect specified 
proportion(s) of species for individual or model-averaged distributions using parametric or 
non-parametric bootstrapping.  

Usage 

ssd_hc(x, ...) 
 
## S3 method for class 'list' 
ssd_hc(x, percent, proportion = 0.05, ...) 
 
## S3 method for class 'fitdists' 
ssd_hc( 
  x, 
  percent, 
  proportion = 0.05, 
  average = TRUE, 
  ci = FALSE, 
  level = 0.95, 
  nboot = 1000, 
  min_pboot = 0.99, 
  multi_est = TRUE, 
  multi_ci = TRUE, 
  weighted = TRUE, 
  parametric = TRUE, 
  delta = 9.21, 
  samples = FALSE, 
  save_to = NULL, 
  control = NULL, 
  ... 
) 
 
## S3 method for class 'fitburrlioz' 
ssd_hc( 
  x, 
  percent, 
  proportion = 0.05, 
  ci = FALSE, 
  level = 0.95, 
  nboot = 1000, 
  min_pboot = 0.99, 
  parametric = FALSE, 
  samples = FALSE, 
  save_to = NULL, 
  ... 
) 
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Arguments 

x The object. 

... Unused. 

percent A numeric vector of percent values to estimate hazard concentrations for. Soft-
deprecated for proportion = 0.05. 

proportion A numeric vector of proportion values to estimate hazard concentrations for. 

average A flag specifying whether to provide model averaged values as opposed to a 
value for each distribution. 

ci A flag specifying whether to estimate confidence intervals (by bootstrapping). 

level A number between 0 and 1 of the confidence level of the interval. 

nboot A count of the number of bootstrap samples to use to estimate the confidence 
limits. A value of 10,000 is recommended for official guidelines. 

min_pboot A number between 0 and 1 of the minimum proportion of bootstrap samples 
that must successfully fit (return a likelihood) to report the confidence 
intervals. 

multi_est A flag specifying whether to treat the distributions as constituting a single 
distribution (as opposed to taking the mean) when calculating model averaged 
estimates. 

multi_ci A flag specifying whether to treat the distributions as constituting a single 
distribution which is now the recommended approach (as opposed to taking the 
mean) when calculating model averaged confidence intervals. 

weighted A flag which specifies whether to use the original model weights (as opposed 
to re-estimating for each bootstrap sample) unless multi_ci = FALSE in which 
case it specifies whether to take bootstrap samples from each distribution 
proportional to its weight versus calculating the weighted arithmetic means of 
the lower and upper confidence limits. 

parametric A flag specifying whether to perform parametric bootstrapping as opposed to 
non-parametrically resampling the original data with replacement. 

delta A non-negative number specifying the maximum absolute AIC difference 
cutoff. Distributions with an absolute AIC difference greater than delta are 
excluded from the calculations. 

samples A flag specfying whether to include a numeric vector of the bootstrap samples 
as a list column in the output. 

save_to NULL or a string specifying a directory to save where the bootstrap datasets 
and parameter estimates (when successfully converged) to. 

control A list of control parameters passed to stats::optim(). 

Details 

Model-averaged estimates and/or confidence intervals (including standard error) can be 
calculated by treating the distributions as constituting a single mixture distribution versus 

http://127.0.0.1:11139/library/stats/help/optim
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'taking the mean'. When calculating the model averaged estimates treating the distributions as 
constituting a single mixture distribution ensures that ssd_hc() is the inverse of ssd_hp().  

If treating the distributions as constituting a single mixture distribution when calculating 
model average confidence intervals then weighted specifies whether to use the original 
model weights versus re-estimating for each bootstrap sample unless 'taking the mean' in 
which case weighted specifies whether to take bootstrap samples from each distribution 
proportional to its weight (so that they sum to nboot) versus calculating the weighted 
arithmetic means of the lower and upper confidence limits based on nboot samples for each 
distribution.  

Distributions with an absolute AIC difference greater than a delta of by default 7 have 
considerably less support (weight < 0.01) and are excluded prior to calculation of the hazard 
concentrations to reduce the run time.  

Value 

A tibble of corresponding hazard concentrations.  

Methods (by class) 

 ssd_hc(list): Hazard Concentrations for Distributional Estimates  
 ssd_hc(fitdists): Hazard Concentrations for fitdists Object  
 ssd_hc(fitburrlioz): Hazard Concentrations for fitburrlioz Object  

References 

Burnham, K.P., and Anderson, D.R. 2002. Model Selection and Multimodel Inference. 
Springer New York, New York, NY. doi:10.1007/b97636.  

See Also 

predict.fitdists() and ssd_hp().  

Examples 

Run examples 

 
ssd_hc(ssd_match_moments()) 
 
fits <- ssd_fit_dists(ssddata::ccme_boron) 
ssd_hc(fits) 
 
fit <- ssd_fit_burrlioz(ssddata::ccme_boron) 
ssd_hc(fit) 

 

http://127.0.0.1:11139/library/ssdtools/help/predict.fitdists
http://127.0.0.1:11139/library/ssdtools/help/ssd_hp
http://127.0.0.1:11139/library/ssdtools/Example/ssd_hc
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ssd_hp {ssdtools} R Documentation 

Hazard Proportion 

Description 

Calculates proportion of species affected at specified concentration(s) with quantile based 
bootstrap confidence intervals for individual or model-averaged distributions using 
parametric or non-parametric bootstrapping. For more information see the inverse function 
ssd_hc().  

Usage 

ssd_hp(x, ...) 
 
## S3 method for class 'fitdists' 
ssd_hp( 
  x, 
  conc = 1, 
  average = TRUE, 
  ci = FALSE, 
  level = 0.95, 
  nboot = 1000, 
  min_pboot = 0.99, 
  multi_est = TRUE, 
  multi_ci = TRUE, 
  weighted = TRUE, 
  parametric = TRUE, 
  delta = 9.21, 
  samples = FALSE, 
  save_to = NULL, 
  control = NULL, 
  ... 
) 
 
## S3 method for class 'fitburrlioz' 
ssd_hp( 
  x, 
  conc = 1, 
  ci = FALSE, 
  level = 0.95, 
  nboot = 1000, 
  min_pboot = 0.99, 
  parametric = FALSE, 
  samples = FALSE, 
  save_to = NULL, 
  ... 
) 

Arguments 

x The object. 

http://127.0.0.1:11139/library/ssdtools/help/ssd_hc
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... Unused. 

conc A numeric vector of concentrations to calculate the hazard proportions for. 

average A flag specifying whether to provide model averaged values as opposed to a 
value for each distribution. 

ci A flag specifying whether to estimate confidence intervals (by bootstrapping). 

level A number between 0 and 1 of the confidence level of the interval. 

nboot A count of the number of bootstrap samples to use to estimate the confidence 
limits. A value of 10,000 is recommended for official guidelines. 

min_pboot A number between 0 and 1 of the minimum proportion of bootstrap samples 
that must successfully fit (return a likelihood) to report the confidence 
intervals. 

multi_est A flag specifying whether to treat the distributions as constituting a single 
distribution (as opposed to taking the mean) when calculating model averaged 
estimates. 

multi_ci A flag specifying whether to treat the distributions as constituting a single 
distribution which is now the recommended approach (as opposed to taking the 
mean) when calculating model averaged confidence intervals. 

weighted A flag which specifies whether to use the original model weights (as opposed 
to re-estimating for each bootstrap sample) unless multi_ci = FALSE in which 
case it specifies whether to take bootstrap samples from each distribution 
proportional to its weight versus calculating the weighted arithmetic means of 
the lower and upper confidence limits. 

parametric A flag specifying whether to perform parametric bootstrapping as opposed to 
non-parametrically resampling the original data with replacement. 

delta A non-negative number specifying the maximum absolute AIC difference 
cutoff. Distributions with an absolute AIC difference greater than delta are 
excluded from the calculations. 

samples A flag specfying whether to include a numeric vector of the bootstrap samples 
as a list column in the output. 

save_to NULL or a string specifying a directory to save where the bootstrap datasets 
and parameter estimates (when successfully converged) to. 

control A list of control parameters passed to stats::optim(). 

Value 

A tibble of corresponding hazard proportions.  

Methods (by class) 

 ssd_hp(fitdists): Hazard Proportions for fitdists Object  
 ssd_hp(fitburrlioz): Hazard Proportions for fitburrlioz Object  

http://127.0.0.1:11139/library/stats/help/optim
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See Also 

ssd_hc()  

Examples 

Run examples 

fits <- ssd_fit_dists(ssddata::ccme_boron) 
ssd_hp(fits, conc = 1) 
 
fit <- ssd_fit_burrlioz(ssddata::ccme_boron) 
ssd_hp(fit) 

 

[Package ssdtools version 1.0.6.9010 Index] 

 

 

 

  

http://127.0.0.1:11139/library/ssdtools/help/ssd_hc
http://127.0.0.1:11139/library/ssdtools/Example/ssd_hp
http://127.0.0.1:11139/library/ssdtools/html/00Index.html
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Getting Started with ssdtools

ssdtools Team

2024-05-17

Introduction

ssdtools is an R package to fit Species Sensitivity Distributions (SSDs) using Maximum Likelihood and
model averaging.
SSDs are cumulative probability distributions that are used to estimate the percent of species that are
affected and/or protected by a given concentration of a chemical. The concentration that affects 5% of
the species is referred to as the 5% Hazard Concentration (HC5 ). This is equivalent to a 95% protection
value (PC95). For more information on SSDs the reader is referred to Posthuma et al. (2001).
In order to use ssdtools you need to install R (see below) or use the Shiny app. The shiny app includes
a user guide. This vignette is a user manual for the R package.

Philosophy

ssdtools provides the key functionality required to fit SSDs using Maximum Likelihood and model
averaging in R. It is intended to be used in conjunction with tidyverse packages such as readr to input
data, tidyr and dplyr to group and manipulate data and ggplot2 (Wickham 2016) to plot data. As
such it endeavors to fulfill the tidyverse manifesto.

Installing

In order to install R (R Core Team 2018) the appropriate binary for the users operating system should
be downloaded from CRAN and then installed.
Once R is installed, the ssdtools package can be installed (together with the tidyverse) by executing
the following code at the R console

install.packages(c("ssdtools", "tidyverse"))

The ssdtools package (and ggplot2 package) can then be loaded into the current session using

library(ssdtools)
library(ggplot2)

Getting Help

To get additional information on a particular function just type ? followed by the name of the function
at the R console. For example ?ssd_gof brings up the R documentation for the ssdtools goodness of
fit function.
For more information on using R the reader is referred to R for Data Science (Wickham and Grolemund
2016).
If you discover a bug in ssdtools please file an issue with a reprex (repeatable example) at https:
//github.com/bcgov/ssdtools/issues.
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Inputting Data

Once the ssdtools package has been loaded the next task is to input some data. An easy way to do this
is to save the concentration data for a single chemical as a column called Conc in a comma separated file
(.csv). Each row should be the sensitivity concentration for a separate species. If species and/or group
information is available then this can be saved as Species and Group columns. The .csv file can then
be read into R using the following

data <- read_csv(file = "path/to/file.csv")

For the purposes of this manual we use the CCME dataset for boron.

ccme_boron <- ssddata::ccme_boron
print(ccme_boron)
#> # A tibble: 28 x 5
#> Chemical Species Conc Group Units
#> <chr> <chr> <dbl> <fct> <chr>
#> 1 Boron Oncorhynchus mykiss 2.1 Fish mg/L
#> 2 Boron Ictalurus punctatus 2.4 Fish mg/L
#> 3 Boron Micropterus salmoides 4.1 Fish mg/L
#> 4 Boron Brachydanio rerio 10 Fish mg/L
#> 5 Boron Carassius auratus 15.6 Fish mg/L
#> 6 Boron Pimephales promelas 18.3 Fish mg/L
#> 7 Boron Daphnia magna 6 Invertebrate mg/L
#> 8 Boron Opercularia bimarginata 10 Invertebrate mg/L
#> 9 Boron Ceriodaphnia dubia 13.4 Invertebrate mg/L
#> 10 Boron Entosiphon sulcatum 15 Invertebrate mg/L
#> # i 18 more rows

Fitting Distributions

The function ssd_fit_dists() inputs a data frame and fits one or more distributions. The user can
specify a subset of the following 10 distributions. Please see the Distributions and Model averaging
vignettes for more information appropriate use of distributions and the use of model-averaged SSDs.

ssd_dists_all()
#> [1] "burrIII3" "gamma" "gompertz" "invpareto"
#> [5] "lgumbel" "llogis" "llogis_llogis" "lnorm"
#> [9] "lnorm_lnorm" "weibull"

using the dists argument.

fits <- ssd_fit_dists(ccme_boron, dists = c("llogis", "lnorm", "gamma"))

Coefficients

The estimates for the various terms can be extracted using the tidyverse generic tidy function (or the
base R generic coef function).

tidy(fits)
#> # A tibble: 6 x 4
#> dist term est se
#> <chr> <chr> <dbl> <dbl>
#> 1 llogis locationlog 2.63 0.248
#> 2 llogis scalelog 0.740 0.114
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#> 3 lnorm meanlog 2.56 0.235
#> 4 lnorm sdlog 1.24 0.166
#> 5 gamma scale 25.1 7.64
#> 6 gamma shape 0.950 0.223

Plots

It is generally more informative to plot the fits using the autoplot generic function (a wrapper on
ssd_plot_cdf()). As autoplot returns a ggplot object it can be modified prior to plotting.

theme_set(theme_bw()) # set plot theme

autoplot(fits) +
ggtitle("Species Sensitivity Distributions for Boron") +
scale_colour_ssd()
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Selecting One Distribution

Given multiple distributions the user is faced with choosing the “best” distribution (or as discussed below
averaging the results weighted by the fit).

ssd_gof(fits)
#> # A tibble: 3 x 9
#> dist ad ks cvm aic aicc bic delta weight
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 llogis 0.487 0.0994 0.0595 241. 241. 244. 3.38 0.11
#> 2 lnorm 0.507 0.107 0.0703 239. 240. 242. 1.40 0.296
#> 3 gamma 0.440 0.117 0.0554 238. 238. 240. 0 0.595

The ssd_gof() function returns three test statistics that can be used to evaluate the fit of the various
distributions to the data.

• Anderson-Darling (ad) statistic,
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• Kolmogorov-Smirnov (ks) statistic and
• Cramer-von Mises (cvm) statistic

and three information criteria

• Akaike’s Information Criterion (AIC),
• Akaike’s Information Criterion corrected for sample size (AICc) and
• Bayesian Information Criterion (BIC)

Note if ssd_gof() is called with pvalue = TRUE then the p-values rather than the statistics are returned
for the ad, ks and cvm tests.

Following Burnham and Anderson (2002) we recommend the AICc for model selection. The best pre-
dictive model is that with the lowest AICc (indicated by the model with a delta value of 0.000 in the
goodness of fit table). In the current example the best predictive model is the gamma distribution but
the lnorm distribution has some support.

For further information on the advantages of an information theoretic approach in the context of selecting
SSDs the reader is referred to Fox et al. (2021).

Averaging Multiple Distributions

Often other distributions will fit the data almost as well as the best distribution as evidenced by delta
values < 2 (Burnham and Anderson 2002). In this situation the recommended approach is to estimate
the average fit based on the relative weights of the distributions (Burnham and Anderson 2002). The
AICc based weights are indicated by the weight column in the goodness of fit table. In the current
example, the gamma and log-normal distributions have delta values < 2. A detailed introduction to
model averaging can be found in the Model averaging vignette. A discussion on the recommended set of
default distributions can be found in the Distributions vignette.

Estimating the Fit

The predict function can be used to generate model-averaged (or if average = FALSE individual)
estimates by parametric bootstrapping. Model averaging is based on AICc unless the data censored is
which case AICc in undefined. In this situation model averaging is only possible if the distributions have
the same number of parameters. Parametric bootstrapping is computationally intensive. To bootstrap
for each distribution in parallel register the future back-end and then select the evaluation strategy.

doFuture::registerDoFuture()
future::plan(future::multisession)

set.seed(99)
boron_pred <- predict(fits, ci = TRUE)

The resultant object is a data frame of the estimated concentration (est) with standard error (se) and
lower (lcl) and upper (ucl) 95% confidence limits (CLs) by percent of species affected (percent). The
object includes the number of bootstraps (nboot) data sets generated as well as the proportion of the
data sets that successfully fitted (pboot). There is no requirement for the bootstrap samples to converge.

boron_pred
#> # A tibble: 99 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.01 0.267 0.401 0.0418 1.53 1 parame~ 1000 0.999 <dbl>
#> 2 average 0.02 0.531 0.517 0.110 2.03 1 parame~ 1000 0.999 <dbl>
#> 3 average 0.03 0.783 0.614 0.198 2.50 1 parame~ 1000 0.999 <dbl>
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#> 4 average 0.04 1.02 0.700 0.300 2.90 1 parame~ 1000 0.999 <dbl>
#> 5 average 0.05 1.26 0.781 0.407 3.29 1 parame~ 1000 0.999 <dbl>
#> 6 average 0.06 1.48 0.859 0.520 3.72 1 parame~ 1000 0.999 <dbl>
#> 7 average 0.07 1.71 0.933 0.645 4.16 1 parame~ 1000 0.999 <dbl>
#> 8 average 0.08 1.93 1.01 0.768 4.58 1 parame~ 1000 0.999 <dbl>
#> 9 average 0.09 2.16 1.08 0.896 4.95 1 parame~ 1000 0.999 <dbl>
#> 10 average 0.1 2.38 1.15 1.03 5.39 1 parame~ 1000 0.999 <dbl>
#> # i 89 more rows

The data frame of the estimates can then be plotted together with the original data using the ssd_plot()
function to summarize an analysis. Once again the returned object is a ggplot object which can be
customized prior to plotting.

ssd_plot(ccme_boron, boron_pred,
color = "Group", label = "Species",
xlab = "Concentration (mg/L)", ribbon = TRUE

) +
expand_limits(x = 5000) + # to ensure the species labels fit
ggtitle("Species Sensitivity for Boron") +
scale_colour_ssd()
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In the above plot the model-averaged 95% confidence interval is indicated by the shaded band and
the model-averaged 5%/95% Hazard/Protection Concentration (HC5/ PC95) by the dotted line. Haz-
ard/Protection concentrations are discussed below.

Hazard/Protection Concentrations

The 5% hazard concentration (HC5 ) is the concentration that affects 5% of the species tested. This
is equivalent to the 95% protection concentration which protects 95% of species (PC95). The hazard
and protection concentrations are directly interchangeable, and terminology depends simply on user
preference.

The hazard/protection concentrations can be obtained using the ssd_hc function, which can be used to
obtain any desired percentage value. The fitted SSD can also be used to determine the percentage of
species protected at a given concentration using ssd_hp.
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set.seed(99)
boron_hc5 <- ssd_hc(fits, proportion = 0.05, ci = TRUE)
print(boron_hc5)
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.05 1.32 0.849 0.370 3.67 1 parametr~ 1000 1 <dbl>
boron_pc <- ssd_hp(fits, conc = boron_hc5$est, ci = TRUE)
print(boron_pc)
#> # A tibble: 1 x 11
#> dist conc est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<list>>
#> 1 average 1.32 5 3.23 0.586 12.8 1 parametric 1000 1 <dbl [0]>

Censored Data

Censored data is that for which only a lower and/or upper limit is known for a particular species. If the
right argument in ssd_fit_dists() is different to the left argument then the data are considered to
be censored. Let’s make some example censored data.

example_dat <- ssddata::ccme_boron |>
dplyr::mutate(left=Conc, right=Conc)

left_censored_example <- example_dat
left_censored_example$left[c(3,6,8)] <- NA

There are less goodness-of-fit statistics available for fits to censored data (currently just AIC and BIC).
The delta values are calculated using AIC‘.
As the sample size n is undefined for censored data, AICc cannot be calculated. However, if all the
models have the same number of parameters, the AIC delta values are identical to those for AICc. For
this reason, ssdtools only permits the analysis of censored data using two-parameter models. We can
call only the default two parameter models using ssd_dists_bcanz(n = 2).

left_censored_dists <- ssd_fit_dists(left_censored_example,
dists = ssd_dists_bcanz(n = 2),
left = "left", right = "right")

ssd_hc(left_censored_dists, average = FALSE)
#> # A tibble: 5 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <int> <dbl> <I<lis>
#> 1 gamma 0.05 0.674 NA NA NA 0.376 paramet~ 0 NA <dbl>
#> 2 lgumbel 0.05 1.51 NA NA NA 0.0221 paramet~ 0 NA <dbl>
#> 3 llogis 0.05 1.15 NA NA NA 0.0590 paramet~ 0 NA <dbl>
#> 4 lnorm 0.05 1.32 NA NA NA 0.176 paramet~ 0 NA <dbl>
#> 5 weibull 0.05 0.752 NA NA NA 0.367 paramet~ 0 NA <dbl>
ssd_hc(left_censored_dists)
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <int> <dbl> <I<lis>
#> 1 average 0.05 0.859 NA NA NA 1 parametr~ 0 NaN <dbl>
ssd_gof(left_censored_dists)
#> # A tibble: 5 x 9
#> dist ad ks cvm aic aicc bic delta weight
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 gamma NA NA NA 222. NA NA 0 0.376
#> 2 lgumbel NA NA NA 228. NA NA 5.67 0.022
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#> 3 llogis NA NA NA 226. NA NA 3.70 0.059
#> 4 lnorm NA NA NA 224. NA NA 1.52 0.176
#> 5 weibull NA NA NA 222. NA NA 0.046 0.367

The model-averaged predictions (and hazard concentrations complete with 95% confidence limits) can
be calculated using AIC and the results plotted complete with arrows indicating the censorship.

set.seed(99)
left_censored_pred <- predict(left_censored_dists, ci = TRUE)

ssd_plot(left_censored_example, left_censored_pred,
left = "left", right = "right",
xlab = "Concentration (mg/L)"

)
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Note that ssdtools doesn’t currently support right censored data:

right_censored_example <- example_dat
right_censored_example$right[c(3,6,8)] <- NA
right_censored_dists <- try(ssd_fit_dists(right_censored_example,

dists = ssd_dists_bcanz(n = 2),
left = "left", right = "right"))

#> Error in eval(expr, envir, enclos) :
#> Distributions cannot currently be fitted to right censored data.
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Background

“Many authors have noted that there is no guiding theory in ecotoxicology to justify any particular dis-
tributional form for the SSD other than that its domain be restricted to the positive real line (Newman et
al. 2000), (Zajdlik 2005), (Chapman et al. 2007), (Fox 2016). Indeed, (Chapman et al. 2007) described
the identification of a suitable probability model as one of the most important and difficult choices in the
use of SSDs. Compounding this lack of clarity about the functional form of the SSD is the omnipresent,
and equally vexatious issue of small sample size, meaning that any plausible candidate model is unlikely
to be rejected (Fox et al. 2021a). The ssdtools R package uses a model averaging procedure to avoid
the need to a-priori select a candidate distribution and instead uses a measure of ‘fit’ for each model to
compute weights to be applied to an initial set of candidate distributions. The method, as applied in the
SSD context is described in detail in (Fox et al. 2021a), and potentially provides a level of flexibility and
parsimony that is difficult to achieve with a single SSD distribution”. (Fox et al. 2021b)

Preliminaries

Before we jump into model averaging and in particular, SSD Model Averaging, let’s backup a little and
consider why we average and the advantages and disadvantages of averaging.

The pros and cons of averaging

We’re all familiar with the process of averaging. Indeed, averages are pervasive in everyday life - we talk
of average income; mean sea level; average global temperature; average height, weight, age etc. etc. So
what’s the obsession with averaging? It’s simple really - it’s what statisticians call data reduction which
is just a fancy name to describe the process of summarising a lot of raw data using a small number of
(hopefully) representative summary statistics such as the mean and the standard deviation. Clearly, it’s
a lot easier to work with just a single mean than all the individual data values. That’s the upside. The
downside is that the process of data reduction decimates your original data - you lose information in the
process. Nevertheless, the benefits tend to outweigh this information loss. Indeed, much of ‘conventional’
statistical theory and practice is focused on the mean. Examples include T-tests, ANOVA, regression,
and clustering. When we talk of an ‘average’ we are usually referring to the simple, arithmetic mean:

X̄ = 1
n

n∑
i=1

Xi

although we recognize there are other types of mean including the geometric mean, the harmonic mean
and the weighted mean. The last of these is particularly pertinent to model averaging.

Weighted Averages

For the simple arithmetic mean, all of the individual values receive the same weighting - they each
contribute 1

n to the summation. While this is appropriate in many cases, it’s not useful when the
components contribute to varying degrees. An example familiar to ecotoxicologists is that of a time-
varying concentration as shown in the figure below.
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From the figure we see there are 5 concentrations going from left to to right: {0.25, 0.95, 0.25, 0.12, 0.5}.
If we were to take the simple arithmetic mean of these concentrations we get X̄ = 0.414. But this ignores
the different durations of these 5 concentrations. Of the 170 hours, 63 were at concentration 0.25, 25 at
concentration 0.95, 23 at concentration 0.25, 23 at concentration 0.12, and 36 at concentration 0.50. So
if we were to weight these concentrations by time have:

X̄T W = (63 · 0.25 + 25 · 0.95 + 23 · 0.25 + 23 · 0.12 + 36 · 0.50)
(63 + 25 + 23 + 23 + 36) = 56.01

170 = 0.33

So, our formula for a weighted average is:

X̄ =
n∑

i=1
wiXi

with 0 ≤ wi ≤ 1 and
n∑

i=1
wi = 1.Note, the simple arithmetic mean is just a special case of the weighted

mean with
n∑

i=1
wi = 1

n ; ∀i = 1, . . . , n

Model Averaging

The weighted average acknowledges that the elements in the computation are not of equal ‘importance’.
In the example above, this importance was based on the proportion of time that the concentration was
at a particular level. Bayesians are well-versed in this concept - the elicitation of prior distributions for
model parameters provides a mechanism for weighting the degree to which the analysis is informed by
existing knowledge versus using a purely data-driven approach. Model averaging is usually used in the
context of estimating model parameters or quantities derived from a fitted model - for example an EC50
derived from a C-R model. Let’s motivate the discussion using the following small dataset of toxicity
estimates for some chemical.

#> [1] 1.73 0.57 0.33 0.28 0.30 0.29 2.15 0.80 0.76 0.54 0.42 0.83 0.21 0.18 0.59

Now, suppose we have only two possibilities for fitting an SSD - both lognormal distributions. Model
1 is the LN(-1.067,0.414) distribution while Model 2 is the LN(-0.387,0.617) distribution. A plot of the
empirical cdf and Models 1 and 2 is shown below.
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Figure 1: Emprirical cdf (black); Model 1(green); and Model 2 (blue)

We see that Model 1 fits well in the lower, left region and poorly in the upper region, while the reverse
is true for Model 2. So using either Model 1 or Model 2 is going to result in a poor fit overall. However,
the obvious thing to do is to combine both models. We could just try using 50% of Model 1 and 50% of
Model 2, but that may be sub-optimal. It turns out that the best fit is obtained by using 44% of Model
1 and 56% of Model 2. Redrawing the plot and adding the weighted average of Models 1 and 2 is shown
below.

Clearly the strategy has worked - we now have an excellent fitting SSD.What about estimation of an
HC20? It’s a simple matter to work out the individual HC20 values for Models 1&2 using the appropriate
qlnorm() function in R. Thus we have:

# Model 1 HC20
cat("Model 1 HC20 =",qlnorm(0.2,-1.067,0.414))
#> Model 1 HC20 = 0.2428209

# Model 2 HC20
cat("Model 2 HC20 =",qlnorm(0.2,-0.387,0.617))
#> Model 2 HC20 = 0.4040243

What about the averaged distribution? An intuitively appealing approach would be to apply the same
weights to the individual HC20 values as was applied to the respective models. That is 0.44*0.2428209
+ 0.56*0.4040243 = 0.33.

So our model-averaged HC20 estimate is 0.33. As a check, we can determine the fraction affected at
concentration = 0.33 - it should of course be 20%. Let’s take a look at the plot.
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Figure 2: Empirical cdf (black); Model 1(green); Model 2 (blue); and averaged Model (red)
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Something’s wrong - the fraction affected at concentration 0.33 is 30% - not the required 20%. This
issue is taken up in the next section
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Model Averaged SSDs

As we’ve just seen, applying the model weights to component HCx values and summing does not produce
the correct result. The reason for this can be explained mathematically as follows (if your not interested
in the mathematical explanation - skip ahead to the next section).

The fallacy of weighting individual HCx values

The correct expression for a model-averaged SSD is:

G (x) =
k∑

i=1
wiFi (x)

where Fi (·) is the ith component SSD (i.e. cdf ) and wi is the weight assigned to Fi (·). Notice that the
function G (x) is a proper cumulative distribution function (cdf ) which means for a given quantile, x,
G (x) returns the cumulative probability:

P [X ⩽ x]

Now, the incorrect approach takes a weighted sum of the component inverse cdf’s, that is:

H (p) =
k∑

i=1
wiFi

−1 (p)

where Fi
−1 (·) is the ith inverse cdf. Notice that Gi (·) is a function of a quantile and returns a probability

while Hi (·) is a function of a probability and returns an quantile.

Now, the correct method of determining the HCx is to work with the proper model-averaged cdf G (x).
This means finding the inverse function G−1 (p). We’ll address how we do this in a moment.

The reason why H (p) does not return the correct result is because of the implicit assumption that the
inverse of G (x) is equivalent to H (p). This is akin to stating the inverse of a sum is equal to the sum
of the inverses i.e.

n∑
i=1

1
Xi

= 1
n∑

i=1
Xi

???

For the mathematical nerds: There are some very special cases where the above identity does in fact
hold, but for that you need to use complex numbers.

For example, consider two complex numbers

a = (5 − i)
2 and b = −1.683 − 1.915i

It can be shown that
1

a + b
= 1

a
+ 1

b
= 0.126 + 0.372i

Back to the issue at hand, and since we’re not dealing with complex numbers, it’s safe to say:

G−1 (p) ̸= H (p)

If you need a visual demonstration, we can plot G (x) and the inverse of H (p) both as functions of x (a
quantile) for our two-component lognormal distribution above.
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1.12

Clearly, the two functions are not the same and thus HCx values derived from each will nearly always
be different (as indicated by the positions of the vertical red and green dashed lines in the Figure above
corresponding to the 2 values of the HC20 ). (Note: The two curves do cross over at a concentration of
about 1.12 corresponding to the 90th percentile, but in the region of ecotoxicological interest, there is no
such cross-over and so the two approaches will always yield different HCx values with this difference →
0 as x → 0).

WE next discuss the use of a model-averaged SSD to obtain the correct model-averaged HCx.

Computing a model-averaged HCx

A proper HCx needs to satisfy what David Fox refers to as the inversion principle.

More formally, the inversion principle states that an HCx (denoted as φx) must satisfy the following:

df (φx) = x and qf (x) = φx

where df (·) is a model-averaged distribution function (i.e. SSD) and qf (·) is a model-averaged quantile
function. For this equality to hold, it is necessary that qf (p) = df−1 (p).

So, in our example above, the green curve was taken to be qf (x) and this was used to derive φx but the
fraction affected {= df (φx)} at φx is computed using the red curve.

In ssdtools the following is a check that the inversion principle holds:

# Obtain a model-averaged HCx using the ssd_hc() function
hcp<-ssd_hc(x, p = p)
# Check that the inversion principle holds
ssd_hp(x, hcp, multi_est = TRUE) == p # this should result in logical ‘TRUE‘
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Note: if the multi_est argument is set to FALSE the test will fail.

The inversion principle ensures that we only use a single distribution function to compute both the
HCx and the fraction affected. Referring to the figure below, the HCx is obtained from the MA-SSD
(red curve) by following the → arrows while the fraction affected is obtained by following the ← arrows.

Finally, we’ll briefly discuss how the HCx is computed in R using the same method as has been imple-
mented in ssdtools.

Computing the HCx in R/ssdtools

Recall, our MA-SSD was given as

G (x) =
k∑

i=1
wiFi (x)

and an HCx is obtained from the MA-SSD by essentially working ‘in reverse’ by starting at a value of x
on the vertical scale in the Figure above and following the → arrows and reading off the corresponding
value on the horizontal scale.

Obviously, we need to be able to ‘codify’ this process in R (or any other computer language).Mathematically
this is equivalent to seeking a solution to the following equation:

x : G (x) = p

or, equivalently:
x : G (x) − p = 0

for some fraction affected, p.

Finding the solution to this last equation is referred to as finding the root(s) of the function G (x) or, as
is made clear in the figure below, finding the zero-crossing of the function G (x) for the case p = 0.2.
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In R finding the roots of x : G (x) − p = 0 is achieved using the uniroot() function.
Help on the uniroot function can be found here

Where do the model-averaged weights come from?

This is a little more complex, although we’ll try to provide a non-mathematical explanation. For those
interested in going deeper, a more comprehensive treatment can be found in (Burnham and Anderson
2002) and (Fletcher 2018) as well as this on-line course .
This time, we’ll look at fitting a gamma, lognormal, and pareto distribution to our sample data:

#> [1] 1.73 0.57 0.33 0.28 0.30 0.29 2.15 0.80 0.76 0.54 0.42 0.83 0.21 0.18 0.59

The adequacy (or otherwise) of a fitted model can be assessed using a variety of numerical measures
known as goodness-of-fit or GoF statistics. These are invariably based on a measure of discrepancy
between the emprical data and the hypothesized model. Common GoF statistics used to test whether the
hypothesis of some specified theoretical probability distribution is plausible for a given data set include:
Kolmogorov-Smirnov test; Anderson-Darling test; Shapiro-Wilk test;and Cramer-von Mises test. The
Cramer-von Mises test is a good choice and is readily performed using the cvm.test() function in the
goftest package in R as follows:

dat<-data.frame(Conc=c(1.73,0.57,0.33,0.28,0.3,0.29,2.15,0.8,0.76,0.54,0.42,0.83,0.21,0.18,0.59))
library(goftest)
library(EnvStats) # this is required for the Pareto cdf (ppareto)

# Examine the fit for the gamma distribution (NB: parameters estimated from the data)
cvm.test(dat$Conc,null = "pgamma",shape = 2.0591977,scale = 0.3231032,estimated = TRUE)

# Examine the fit for the lognormal distribution (NB: parameters estimated from the data)
cvm.test(dat$Conc,null = "plnorm",meanlog=-0.6695120,sd=0.7199573,estimated = TRUE)
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# Examine the fit for the Pareto distribution (NB: parameters estimated from the data)
cvm.test(dat$Conc,null = "ppareto",location = 0.1800000,shape = 0.9566756,estimated = TRUE)

Cramer-von Mises test of goodness-of-fit
Braun’s adjustment using 4 groups
Null hypothesis: Gamma distribution
with parameters shape = 2.0591977, scale = 0.3231032
Parameters assumed to have been estimated from data

data: dat$Conc
omega2max = 0.34389, p-value = 0.3404

Cramer-von Mises test of goodness-of-fit
Braun’s adjustment using 4 groups
Null hypothesis: log-normal distribution
with parameter meanlog = -0.669512
Parameters assumed to have been estimated from data

data: dat$Conc
omega2max = 0.32845, p-value = 0.3719

Cramer-von Mises test of goodness-of-fit
Braun’s adjustment using 4 groups
Null hypothesis: distribution ‘ppareto’
with parameters location = 0.18, shape = 0.9566756
Parameters assumed to have been estimated from data

data: dat$Conc
omega2max = 0.31391, p-value = 0.4015

From this output and using a level of significance of p = 0.05, we see that none of the distributions is
implausible. However, if forced to choose just one distribution, we would choose the Pareto distribution
(smaller values of the omega2max statistic are better). However, this does not mean that the gamma and
lognormal distributions are of no value in describing the data. We can see from the plot below, that in
fact both the gamma and lognormal distributions do a reasonable job over the range of toxicity values.
The use of the Pareto may be a questionable choice given it is truncated at 0.18 (which is the minimum
value of our toxicity data).

As in the earlier example, we might expect to find a better fitting distribution by combining all three
distributions using a weighted SSD. The issue we face now is how do we choose the weights to reflect the
relative fits of the three distributions? Like all tests of statistical significance, a p-value is computed from
the value of the relevant test statistic - in this case, the value of the omega2max test statistic. For this
particular test, it’s a case of the smaller the better. From the output above we see that the omega2max
values are 0.344 for the gamma distribution, 0.328 for the lognormal distribution, and 0.0.314 for the
Pareto distribution.

We might somewhat naively compute the relative weights as: w1 = 0.344−1

(0.344−1+0.328−1+0.314−1) = 0.318
w2 = 0.328−1

(0.344−1+0.328−1+0.314−1) = 0.333 and w3 = 0.314−1

(0.344−1+0.328−1+0.314−1) = 0.349 (we use reciprocals
since smaller values of omega2max represent better fits). As will be seen shortly - these are incorrect.

However, being based on a simplistic measure of discrepancy between the observed and hypothesized
distributions, the omega2max statistic is a fairly ‘blunt instrument’ and has no grounding in information
theory which is the basis for determining the weights that we seek.

A discussion of information theoretic methods for assessing goodness-of-fit is beyond the scope of this
vignette. Interested readers should consult (Burnham and Anderson 2002) or the on-line course. A
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Figure 3: Emprirical cdf (black); lognormal (green); gamma (blue); and Pareeto (red)

commonly used metric to determine the model-average weights is the Akaike Information Criterion
or AIC. The formula for the AIC is:

AIC = 2k − 2 ln (ℓ)

where k is the number of model parameters and ℓ is the likelihood for that model. Again, a full discussion
of statistical likelihood is beyond the present scope. A relatively gentle introduction can be found here.

The likelihood for our three distributions can be computed in R as follows:

sum(log(EnvStats::dpareto(dat$Conc,location = 0.1800000, shape=0.9566756)))
#> [1] -5.621683
sum(log(dgamma(dat$Conc,shape = 2.0591977,scale = 0.3231032)))
#> [1] -7.020597
sum(log(dlnorm(dat$Conc, meanlog = -0.6695120,sdlog = 0.7199573)))
#> [1] -5.812947

From which the AIC values readily follow:

#> AIC for gamma distribution = 18.04119
#> AIC for lognormal distribution = 15.62589
#> AIC for Pareto distribution = 15.24337

As with the omega2max statistic, smaller values of AIC are better. Thus, a comparison of the AIC
values above gives the ranking of distributional fits (best to worst) as: Pareto > lognormal > gamma

Computing model weights from the AIC

We will simply provide a formula for computing the model weights from the AIC values. More detailed
information can be found here.
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The AIC for the ith distribution fitted to the data is

AICi = 2ki − 2 ln (Li)

where Li is the ith likelihood and ki is the number of parameters for the ith distribution. Next, we form
the differences:

∆i = AICi − AIC0

where AIC0 is the AIC for the best-fitting model (i.e.AIC0 = min
i

{AICi} ). The model-averaged
weights wi are then computed as:
The model-averaged weights for the gamma, lognormal, and Pareto distributions used in the previous
example can be computed ‘manually’ in R as follows:

dat<-c(1.73,0.57,0.33,0.28,0.3,0.29,2.15,0.8,0.76,0.54,0.42,0.83,0.21,0.18,0.59)
aic<-NULL
k<-2 # number of parameters for each of the distributions

aic[1]<-2*k-2*sum(log(dgamma(dat,shape = 2.0591977,scale = 0.3231032))) # Gamma distribution

aic[2]<-2*k-2*sum(log(dlnorm(dat, meanlog = -0.6695120,sdlog = 0.7199573))) # lognormal distribution

aic[3]<-2*k-2*sum(log(EnvStats::dpareto(dat,location = 0.1800000, shape=0.9566756))) # Pareto distribution

delta<-aic-min(aic) # compute the delta values

aic.w<-exp(-0.5*delta); aic.w<-round(aic.w/sum(aic.w),4)

cat(" AIC weight for gamma distribution =",aic.w[1],"\n",
"AIC weight for lognormal distribution =",aic.w[2],"\n",
"AIC weight for pareto distribution =",aic.w[3],"\n")

AIC weight for gamma distribution = 0.1191
AIC weight for lognormal distribution = 0.3985
AIC weight for pareto distribution = 0.4824

Finally, let’s look at the fitted model-averaged SSD:
As can be seen from the figure above, the model-averaged fit provides a very good fit to the empirical
data.

Correcting for distributions having differing numbers of parameters

In deriving the AIC, Akaike had to make certain, strong assumptions. In addition, the bias factor (the
2k term) was derived from theoretical considerations (such as mathematical expectation) that relate
to infinite sample sizes. For small sample sizes, the AIC is likely to select models having too many
parameters (i.e models which over-fit) In 1978, Sugiura proposed a modification to the AIC to address
this problem, although it too relied on a number of assumptions. This ‘correction’ to the AIC for small
samples (referred to as AICc) is:
It is clear from the formula for AICc that for n ≫ k, AICc ≃ AIC. The issue of sample size
is ubiquitous in statistics, but even more so in ecotoxicology where logistical and practical limitations
invariably mean we are dealing with (pathologically) small sample sizes. There are no hard and fast
rules as to what constitutes an appropriate sample size for SSD modelling. However, Professor David
Fox’s personal rule of thumb which works quite well is:
Since most of the common SSD models are 2-parameter, we should be aiming to have a sample size of at
least 11. For 3-parameter models (like the Burr III), the minimum sample size is 16 and if we wanted to
fit a mixture of two, 2-parameter models (eg. logNormal-logNormal or logLogistic-logLogistic) the sample
size should be at least 26. Sadly, this is rarely the case in practice!
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Figure 4: Empirical cdf (black) and model-averaged fit (magenta)

Model-Averaging in ssdtools

Please see the Getting started with ssdtools vignette for examples of obtaining model-averaged HCx
values and predictions using ssdtools.
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Distributions for SSD modelling

Many authors have noted that there is no guiding theory in ecotoxicology to justify any particular
distributional form for the SSD other than that its domain be restricted to the positive real line (Newman
et al. 2000; Zajdlik 2005; Fox 2016).

Distributions selected to use in model averaging of SSDs must be bounded by zero given that effect
concentrations cannot be negative. They must also be continuous, and generally unbounded on the
right.

Furthermore, the selected distributions within the candidate model set should provide a variety of shapes
to capture the diversity of shapes in empirical species sensitivity distributions.

There is a wide range of distributions that have been implemented in ssdtools, although not all distri-
butions appear in the default set. Here we provide a detailed account of the distributions available in
ssdtools, and guidance on their use.

Original ssdtools distributions

The log-normal, log-logistic and Gamma distributions have been widely used in SSD modelling, and were
part of the original distribution set for early releases of ssdtools as developed by Thorley and Schwarz
2018. They were adopted as the default set of three distributions in early updates of ssdtools and the
associated ShinyApp (Dalgarno 2021). All three distributions show good convergence properties and are
retained as part of the default model set in version 2.0 of ssdtools.

In addition to the log-normal, log-logistic and Gamma distributions, the original version of ssdtools
as developed by Thorley and Schwarz 2018 also included three additional distributions in the candidate
model set, including the log-gumbel, Gompertz and Weibull distributions. Of these, the log-Gumbel (oth-
erwise known as the inverse Weibull, see below) shows relatively good convergence (see Figure 32, Fox
et al. 2021b), and is also one of the limiting distributions of the Burrr Type 3 distribution implemented
in ssdtools, and has been retained in the default model set. The Gompertz and Weibull distribu-
tions, however can exhibit unstable behaviour, sometimes showing poor convergence, and therefore been
excluded from the default set (see Figure 32, Fox et al. 2021b)

Burr III distribution

A history of Burrlioz and the primary distributions it used were recently summmarized by Fox et al.
(2021a).

“In 2000, Australia and New Zealand (Australian and New Zealand Environment and Conservation
Council/Agriculture and Resource Management Council of Australia and New Zealand 2000) adopted an
SSD-based method for deriving WQBs, following a critical review of multiple WQB derivation methods
(Warne 1998). A distinct feature of the method was the use of a 3-parameter Burr distribution to model
the empirical SSD, which was implemented in the Burrlioz software tool (Campbell et al. 2000). This
represented a generalization of the methods previously employed by Aldenberg and Slob (1993) because the
log–logistic distribution was shown to be a specific case of the Burr family (Tadikamalla 1980). Recent
revision of the derivation method recognized that using the 3-parameter Burr distributions for small
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sample sizes (<8 species) created additional uncertainty by estimating more parameters than could be
justified, essentially overfitting the data (Batley et al. 2018). Consequently, the method, and the updated
software (Burrlioz Ver 2.0), now uses a 2-parameter log–logistic distribution for these small data sets,
whereas the Burr type III distribution is used for data sets of 8 species or more (Batley et al. 2018;
Australian and New Zealand Guidelines 2018).” (Fox et al. 2021a)

The probability density function, fX(x; b, c, k) and cumulative distribution function, FX(x; b, c, k) for the
Burr III distribution are:

Sample Burr probability density functions
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Sample Burr cumulative distribution functions
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While the Burr type III distribution was adopted as the default distribution in Burrlioz, it is well
known (e.g., Tadikamalla (1980)) that the Burr III distribution is related to several other theoretical
distributions, some of which only exist as limiting cases of the Burr III, i.e., as one or more of the Burr
III parameters approaches either zero or infinity. The Burrlioz software incorporates logic that aims to
identify situations where parameter estimates are tending towards either very large or very small values.
In such cases, fitting a Burr III distribution is abandoned and one of the limiting distributions is fitted
instead.

Specifically:

• As c tends to infinity the Burr III distribution tends to the inverse (North American) Pareto
distribution (see technical details)

• As k tends to infinity the Burr III distribution tends to the inverse Weibull (log-Gumbel) distribu-
tion (see technical details)

In practical terms, if the Burr III distribution is fitted and k is estimated to be greater than 100, the
estimation procedure is carried out again using an inverse Weibull distribution. Similarly, if c is greater
than 80 an (American) Pareto distribution is fitted. This is necessary to ensure numerical stability.

Since the Burr type III, inverse Pareto and inverse Weibull (log Gumbel) distributions are used by the
Burrlioz software, these have been implemented in ssdtools. However, we have found there are stability
issues with both the Burr type III, as well as the inverse Pareto distributions, which currently precludes
their inclusion in the default model set (see Fox et al. (2021b), and below for more details).

Bimodal distributions

The use of statistical mixture-models was promoted by Fox as a convenient and more realistic way of
modelling bimodal toxicity data (Fisher et al. 2019). Although parameter heavy, statistical mixture
models provide a better conceptual match to the inherent underlying data generating process since
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they directly model bimodality as a mixture of 2 underlying univariate distributions that represent,
for example, different modes of action (Fox et al. 2021a). It has been postulated that a mixture-model
would only be selected in a model-averaging context when the fit afforded by the mixture is demonstrably
better than the fit afforded by any single distribution. This is a consequence of the high penalty in AICc
associated with the increased number of parameters (p in Equation 7 of (Fox et al. 2021a)) and will be
most pronounced for relatively small sample sizes.

The TMB version of ssdtools now includes the option of fitting two mixture distributions, individually or
as part of a model average set. These can be fitted using ssdtools by supplying the strings “llogis_llogis”
and/or “lnorm_lnorm” to the dists argument in the ssd_fit_dists call.

The underlying code for these mixtures has three components: the likelihood function required for TMB;
exported R functions to allow the usual methods for a distribution to be called (p, q and r); and a set of
supporting R functions (see Fox et al. (2021b) Appendix D for more details). Both mixtures have five
parameters - two parameters for each of the component distributions and a mixing parameter (pmix)
that defines the weighting of the two distributions in the ‘mixture.’

Sample lognormal mixture distributions
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AS can be see from the plot above, the mixture distributions provide a highly flexible means of modelling
bimodality in an emprical SSD. This happens, for example, when the toxicity data for some toxicant
include both animal and plant species, or there are different modes of action operating. Unfortunately,
this increased flexibilty comes with a high penalty in the model-averaging process. The combination of
small sample sizes and a high parameter count (typically 5 or more) means that mixture distributions
will be down-weighted - even when they do a good job at describing the data. For this reason, when
attempting to model bimodal data, we suggest looking at the fit using the default set of distributions
and then examining the fit with just one of either the log-normal mixture or the log-logistic mixture.
Keep in mind that this should only be done if the sample size is not pathologically small. As a guide,
Prof. David Fox recommends as an absolute minimum n ≥ 3k + 1 but preferably n ≥ 5k + 1 where k is
the number of model parameters.

Default Distributions

While there is a variety of distributions available in ssdtools, the inclusion of all of them for estimating
a model-averaged SSD is not recommended.

By default, ssdtools uses the (corrected) Akaike Information Criterion for small sample size (AICc) as
a measure of relative quality of fit for different distributions and as the basis for calculating the model-
averaged weights. However, the choice of distributions used to fit a model-averaged SSD can have a
profound effect on the estimated HCx values.

Deciding on a final default set of distributions to adopt using the model averaging approach is non-trivial,
and we acknowledge that there is probably no definitive ‘solution’ to this issue. However, the default set
should be underpinned by a guiding principle of parsimony, i.e., the set should be as large as is necessary
to cover a wide variety of distributional shapes and contingencies but no bigger. Further, the default
set should result in model-averaged estimates of HCx values that: 1) minimise bias; 2) have actual
coverages of confidence intervals that are close to the nominal level of confidence; 3) estimated HCx
and confidence intervals of HCx are robust to small changes in the data; and 4) represent a positively
continuous distribution that has both right and left tails.
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The ssdtools development team has undertaken extensive simulation studies, as well as some detailed
technical examinations of the various candidate distributions to examine issues of bias, coverage and
numerical stability. A detailed account of our findings can be found in our report (Fox et al. 2021b) and
are not repeated in detail here, although some of the issues associated with individual distributions are
outlined below.

Currently recommended default distributions

The default list of candidate distributions in ssdtools is comprised of the following: log-normal; log-
logistic; gamma; inverse Weibull (log-Gumbel); Weibull; mixture of two log-normal distributions

The default distributions are plotted below with a mean of 2 and standard deviation of 2 on the (natural)
log concentration scale or around 7.4 on the concentration scale.
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Distributions currently implemented in ssdtools

Burr Type III distribution The Burr Type 3 is a flexible three parameter distribution can be fitted
using ssdtools by supplying the string burrIII3 to the dists argument in the ssd_fit_dists call.

The Burr family of distributions has been central to the derivation of guideline values in Australia and
New Zealand for over 20 yr (Fox et al. 2021a). While offering a high degree of flexibility, experience
with these distributions during that time has repeatedly highlighted numerical stability and convergence
issues when parameters are estimated using maximum likelihood (Fox et al. 2021a). This is thought to
be due to the high degree of collinearity between parameter estimates and/or relatively flat likelihood
profiles (Fox et al. 2021a), and is one of the motivations behind the logic coded into Burrlioz to revert to
either of the two limiting distributions. Burr Type 3 distribution is not currently one of the recommended
distributionsin the default model set. This is because of 1) the convergence issues associated with the
Burr Type 3 distribution, 2) the fact that reverting to a limiting two parameter distribution does not fit
easily within a model averaging framework, and 3) that one of the two limiting distributions (the inverse
Pareto, see below) also has estimation and convergence issues.
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Log-normal The log-normal distribution is a commonly used distribution in the natural sciences -
particularly as a probability model to describe right (positive)-skewed pehnomena such as concentration
data.

A random variable, X is lognormally distributed if the logarithm of X is normally distributed. The pdf
of X is given by

The lognormal distribution was selected as the starting distribution given the data are for effect concen-
trations. The log-normal distribution can be fitted using ssdtools supplying the string lnorm to the
dists argument in the ssd_fit_dists call.

Sample lognormal probability density functions

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration

P
ro

ba
bi

lit
y 

de
ns

ity

Sample lognormal cumulative distribution functions
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Log-logistic distribution Like the lognormal distribution, the log-logistic is similarly defined, that
is: if X has a log-logistic distribution, then Y = ln(X) has a logistic distribution.

letting µ = ln (α) and s = 1
β we have:

The log-logistic distribution is often used as a candidate SSD primarily because of its analytic tractability
(Aldenberg and Slob 1993). We included it because it has wider tails than the log-normal and because it
is a specific case of the more general Burr family of distributions Burr (1942). The log-logistic distribution
can be fitted using ssdtools by supplying the string lnorm to the dists argument in the ssd_fit_dists
call.

Sample Log-logistic probability density functions
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Sample Log-logistic cumulative distribution functions
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Gamma distribution The two-parameter gamma distribution has the following pdf and cdf.

where Γ (·) is the gamma function (in R this is simply gamma(x)) and γ (·) is the (lower) incomplete
gamma function

γ (x, a) =
x∫

0

ta−1 e−t dt

(this can be computed using the gammainc function from the pracma package in R).

For use in modeling species sensitivity data, the gamma distribution has two key features that provide
additional flexibility relative to the log-normal distribution: 1) it is asymmetrical on the logarithmic
scale; and 2) it has wider tails.

The gamma distribution can be fitted using ssdtools by supplying the string “gamma” to the dists
argument in the ssd_fit_dists call.

Sample gamma probability density functions
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Sample gamma cumulative distribution functions
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Log-gumbel (inverse Weibull) distribution The log-gumbel distribution is a two-parameter dis-
tribution commonly used to model extreme values.

The log-gumbel distribution can be fitted using ssdtools by supplying the string lgumbel to the dists
argument in the ssd_fit_dists call.

The two-parameter log-gumbel distribution has the following pdf and cdf :

Sample Log-Gumbel probability density functions
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Sample Log-Gumbel cumulative distribution functions

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

12



Gompertz distribution The Gompertz distribution is a flexible distribution that exhibits both pos-
itive and negative skewness.

The Gompertz distribution can be fitted using ssdtools by supplying the string gompertz to the dists
argument in the ssd_fit_dists call.

We condiser two parameterisations of the Gompertz distribution.The first, as given in Wikipedia and
also used in ssdtools [Gompertz] has the following pdf and cdf :

The second parameterisation in which the product bη in the formulae above is replaced by the parameter
a giving:

Sample Gompertz probability density functions
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Sample Gompertz cumulative distribution functions
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The Gompertz distribution is available in ssdtools, however parameter estimation can be somewhat
unstable (Fox et al. 2021b), and for this reason it is not currently included in the default set.

Weibull distribution The inclusion of the Weibull distribution and inverse Pareto distribution (see
next) in ssdtools was primarily necessitated by the need to maintain consistency with the calculations
undertaken in Burrlioz. As mentioned earlier, both the Weibull and inverse Pareto distributions arise
as limiting distributions when the Burr parameters c and k tend to either zero and/or infinity in specific
ways.

The two-parameter Weibull distribution has the following pdf and cdf :

The Weibull distribution can be fitted in ssdtools by supplying the string weibull to the dists
argument in the ssd_fit_dists call.

Sample Weibull probability density functions
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Sample Weibull cumulative distribution functions
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Inverse Pareto distribution The inverse Pareto distribution can be fitted using ssdtools by sup-
plying the string invpareto to the dists argument in the ssd_fit_dists call.
While the inverse Pareto distribution is implemented in the Burrlioz 2.0 software, it is important
to understand that it is done so only as one of the limiting Burr distributions (see technical details).
The inverse Pareto is not offered as a stand-alone option in the Burrlioz 2.0 software. We have
spent considerable time and effort exploring the properties of the inverse Pareto distribution, including
deriving bias correction equations and alternative methods for deriving confidence intervals (Fox et al.
2021b). This work has substantial value for improving the current Burrlioz 2.0 method, and our bias
corrections should be adopted when deriving HCx estimates from the inverse Pareto where parameters
have been estimated using maximum likelihood.
As is the case with the Burrlioz 2.0 software, we have decided not to include the inverse Pareto distri-
bution in the default candidate set in ssdtools although it is offered ass a user-selectable distribution
to use in the model-fitting process.
As with many statistical distributions, different ‘variants’ exist. These ‘variants’ are not so much dif-
ferent distributions as they are simple re-parameterisations. For example, many distributions have a
scale parameter, β and some authors and texts will use β while others use 1

β . An example of this
re-paramterisation was given above for the Gompertz distribution. While the choice of mathemati-
cal representation may be purely preferential, it is sometimes done for mathematical convenience. For
example, Parameterisation I of the Gompertz distribution above was obtained by letting a = bη in Pa-
rameterisation II. This re-expression involving parameters b and η would be particularly useful when
trying to fit a distribution for which one of {b, η} was very small and the other was very large.
It has already been noted that the particular parameterisation of the (Inverse)Pareto distribution used in
both Burrlioz 2.0 and ssdtools was not a matter of preference, but rather was dictated by mathemat-
ical considerations which demonstrated convergence of the Burr distribution to one specific version of the
(Inverse)Pareto distribution. While the mathematics provides an elegant solution to an otherwise prob-
lematic situation, this version of the (Inverse)Pareto distribution is not particularly use as a stand-alone
distribution for fitting an SSD (other than as a special, limiting case of the Burr distribution).
The two versions of the (Inverse)Pareto distribution are known as the European and North American
versions. Their pdfs and cdfs are given below.
Importantly, we see that the North American versions of these distributions are bounded with the Pareto
distribution bounded below by β and the inverse Pareto distribution bounded above by 1

β .As an aside,
the mle of β in the Pareto distribution is

β̂ = min {X1, . . . , Xn}

and the mle of 1
β in the inverse Pareto is

β̃ = max {Y1, . . . , Yn}
= max

{
1

X1
, . . . , 1

Xn

}
= 1

min{X1,...,Xn}
= 1

β̂

.
and the mle of α is:

α̂ =
[
ln

(
g

β̂

)]−1

where g is the geometric mean:

g =
[

n∏
i=1

Xi

] 1
n

Thus, it doesn’t matter whether you’re fitting a Pareto or inverse Pareto distribution to your data - the
parameter estimates are the same.
Because it is bounded, the North American version of the (Inverse)Pareto distribution is not useful as a
stand-alone SSD - more so for the inverse Pareto distribution since it is bounded from above.
Sample North American probability density functions : Pareto distribution
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Sample North American cumulative distribution functions : Pareto distribution
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We see from the pdf plots that the

Sample North American probability density functions : inverse Pareto distribution
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Sample North American cumulative distribution functions : inverse Pareto distribution

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration

P
ro

ba
bi

lit
y 

de
ns

ity

19



The alternative, European version of the inverse Pareto distribution is a more realistic candidate.

We note in passing that both versions of these Pareto and inverse Pareto distrbutions are availabale in
R. For example, the Rpackage extraDistr has North American versions, while the actuar package has
European versions.

Sample European probability density functions : Pareto distribution
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Sample European cumulative distribution functions : Pareto distribution
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Sample European probability density functions : inverse Pareto distribution
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Sample European cumulative distribution functions : inverse Pareto distribution
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Inverse Weibull distribution (see log-Gumbel, above) The inverse Weibull is mathematically
equivalent to the log-Gumbel distribution described above. While which is also a limiting distribution
of the Burr Type 3, this distribution does not show the same instability issues, and is unbounded to
the right. It therefore represents a valid SSD distribution and is included in the default model set as a
distribution in its own right.

The inverse Weibull (log-Gumbel) distribution can be fitted in ssdtools by supplying the string lgumbel
to the dists argument in the ssd_fit_dists call.

Relationships among distributions in ssdtools

NOTES

1. In the diagram below, X denotes the random variable in the box at the beginning of the arrow
and the expression beside the arrow indicates the mathematical transformation of X such that the
resultant transformed data has the distribution identified in the box at the end of the arrow.

2. Reciprocal transformations ( 1
X ) are bi-directional (↔).

3. Although the negative exponential distribution is not explicitly included in ssdtools, it is a special
case of the gamma distribution with c = 1. It is included in this figure as it is related to other
distributions that are included in ssdtools.

4. The European versions of the Pareto and inverse Pareto distributions are unbounded; the North
American versions are bounded.
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Confidence Intervals for Hazard Concentrations
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Bootstrap confidence intervals

Bootstrapping is a resampling technique used to obtain estimates of summary statistics. The team have
explored the use of alternative methods for obtaining the confidence interval of HCx estimates. This
included using the closed-form expression for the variance-covariance matrix of the parameters of the Burr
III distribution, coupled with the delta-method, as well as an alternative bootstrap method for the inverse
Pareto distribution based on statistical properties of the parameters (Fox et al. 2021). In both cases, it
appeared that these methods can give results similar to other traditional bootstrapping approaches in
much less time, and are therefore potentially worth further investigation. However, implementation of
such methods across all the distributions now available in ssdtools would be a substantial undertaking.

The revised version of ssdtools retains the computationally intensive bootstrapping method to obtain
confidence intervals and an estimate of standard errors. We recommend a minimum bootstrap sample
of 1,000 (the current default - see argument nboot in ?ssd_hc()). However, more reliable results can be
obtained using samples of 5,000 or 10,000. We recommend larger bootstrap samples for final reporting.

Parametric versus non-parametric bootstrapping

Burrlioz 2.0 uses a non-parametric bootstrap method to obtain confidence intervals on the HCx estimate.
Non-parametric bootstrapping is carried out by repeatedly resampling the raw data with replacement,
and refitting the distribution many times. The 95% confidence limits are then obtained by calculating
the lower 0.025th and upper 0.975th quantiles of the resulting HCx estimates across all56 the bootstrap
samples (typically >1000). This type of bootstrap takes into account uncertainty in the distribution fit
based on uncertainty in the data.

The ssdtools package by default uses a parametric bootstrap. Instead of resampling the data, parametric
bootstrapping draws a random a set of new data (of the same sample size as the original) from the fitted
distribution to repeatedly refit the distribution. Upper and lower 95% bounds are again calculated as
the lower 0.025th and upper 0.975th quantiles of the resulting HCx estimates across all the bootstrap
samples (again, typically >1000). This will capture the possible uncertainty that may occur for a sample
size from a given distribution, but it assumes no uncertainty in that original fit, so it is not accounting
for uncertainty in the input data.

The new TMB version of ssdtools has the capacity to do bootstrapping either using the Burrlioz non-
parametric method, or the original parametric method of ssdtools (based on fitdistrplus (Delignette-
Muller and Dutang 2015)).

Using simulation studies the ssdtools team examined bias and compared the resulting coverage of the
parametric and non-parametric bootstrapping methods (Fox et al. 2021). They found that coverage was
better using the parametric bootstrapping method, and this has been retained as the default bootstrap-
ping method in the update to ssdtools.

Bootstrapping model-averaged SSDs

Bootstrapping to obtain confidence intervals for individual fitted distributions is relatively straight-
forward. However, obtaining bootstrap confidence intervals for model-averaged SSDs requires careful
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consideration, as the procedure is subject to the same pitfalls evident when obtaining model-averaged
HCx estimates. The Model Average SSDs vignette contains a detailed explanation of the fallacy of using
the summed weighting of individual HCx values (as weighted arithmetic average), and how this can lead
to spurious results. Model-averaged estimates and/or confidence intervals (including standard error) can
be calculated by treating the distributions as constituting a single mixture distribution versus ‘taking the
mean’. When calculating the model-averaged estimates treating the distributions as constituting a single
mixture distribution ensures that ssd_hc() is the inverse of ssd_hp(), and this applies for model-averaged
confidence intervals.

The revised version of ssdtools supports three weighting methods for obtaining bootstrap confidence
intervals and an estimate of the standard error, and these are discussed in detail below.

Weighted arithmetic mean

The early versions of ssdtools provided model-averaged confidence intervals (cis) and standard errors (se)
that were calculated as weighted arithmetic means of the upper and lower cis and se values obtained via
bootstrap simulation from each of the individual candidate distributions independently. This method
is incorrect and may lead to spurious results (as described above) and has been shown via simulations
studies to result in confidence intervals with very low coverage. The current version of ssdtools retains
the functionality to reproduce the original behavior of ssdtools.

fit <- ssd_fit_dists(data = ssddata::ccme_silver)
set.seed = 99

# Using the original ssdtools weighted arithmetic mean
hc1 <- ssd_hc(fit, ci = TRUE, multi_est = FALSE, multi_ci = FALSE, weighted = FALSE)

hc1
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.05 0.192 0.216 0.0679 0.861 1 paramet~ 1000 0.998 <dbl>

Use of this method for obtaining ci and se values is not recommended and only retained for legacy
comparison purposes. It is both technically incorrect, and computationally inefficient.

Weighted mixture distribution

A more theoretically correct way of obtaining ci and se values is to consider the model average set as a
mixture distribution (see above, and the Model Average SSDs vignette). When we consider the model set
as a mixture distribution, bootstrapping is achieved by resampling from the model set according to the
AICc based model weights. A method for sampling from mixture distributions has been implemented
in ssdtools, via the function ssd_rmulti(), which will generate random samples from a mixture of any
combination of distributions currently implemented in ssdtools. Setting “multi_ci = TRUE” in the
ssd_hc() call will ensure that bootstrap samples are drawn from a mixture distribution, instead of
individual candidate distributions.

When bootstrapping from the mixture distribution, a question arises whether the model weights should
be re-estimated for every bootstrap sample, or fixed at the values estimated from the models fitted to the
original sample of toxicity data? This is an interesting question that may warrant further investigation,
however our current view is that they should be fixed at their nominal values in the same way that the
component distributions to be used in bootstrapping are informed by the fit to the sample toxicity data.
Using simulation studies we explored the coverage and bias of ci values obtained without and without
fixing the distribution weights, and results indicate little difference.

If treating the distributions as a single mixture distribution when calculating model average confidence
intervals (i.e. with “multi_ci = TRUE”), then setting “weighted = FALSE” specifies to use the original
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model weights. Setting “weighted = TRUE” will result in bootstrapping that will re-estimate weights
for each bootstrap sample.

The following code can be used to obtain confidence intervals for HCx estimates via bootstrapping from
the weighted mixture distribution (using ssd_rmutli()), with and without fixed weight values respectively.

# Using the rmulti boostrapping method with fixed weights
hc2 <- ssd_hc(fit, ci = TRUE, multi_est = TRUE, multi_ci = TRUE, weighted = FALSE)

hc2
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.05 0.190 0.212 0.0216 0.878 1 paramet~ 1000 1 <dbl>

# Using the rmulti boostrapping method with fixed weights
hc3 <- ssd_hc(fit, ci = TRUE, multi_est = TRUE, multi_ci = TRUE, weighted = TRUE)

hc3
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.05 0.190 0.208 0.0216 0.813 1 paramet~ 1000 1 <dbl>

Use of this method (without or without fixed weights) is theoretically correct, but is computationally
very inefficient.

Weighted bootstrap sample

The developers of ssdtools investigated a third method for obtaining confidence intervals for the model-
averaged SSD. This method bootstraps from each of the distributions individually, taking a weighted
sample from each, and then combining these into a pooled bootstrap sample for estimation of te ci and
se values. Psuedo code for this method is as follows:

• For each distribution in the fitdists object, the proportional number of bootstrap samples to
draw (nboot_vals) is found using round(nboot * weight), where nboot is the total number of
bootstrap samples and weight is the AICc based model weights for each distribution based on the
original ssd_fitdist fit.

• For each of the nboot_vals for each distribution, a random sample of size N is drawn (the total
number of original data points included in the original SSD fit) based on the estimated parameters
from the original data for that distribution.

• The random sample is re-fitting using that distribution.

• HCx is estimated from the re-fitted bootstrap fit.

• The HCx estimates for all nboot_vals for each distribution are then pooled across all distributions,
and quantile() is used to determine the lower and upper confidence bounds for this pooled weighted
bootstrap sample of HCx values.

This method does not draw random samples from the mixture distribution using ssd_rmulti (thus
“multi_ci = FALSE”). While mathematically the method shares some properties with obtaining HCx
estimates via summing the weighted values (weighted arithmetic mean), simulation studies have shown
that, as a method for obtaining confidence intervals, this pooled weighted sample method yields similar
ci values and coverage the ssd_rmulti() method, and is computationally much faster.

This method is currently the default method in ssdtools, and can be implemented by setting “multi_ci
= FALSE” and “weighted = TRUE” in the ssd_hc() call.

3



# Using a weighted pooled bootstrap sample
hc4 <- ssd_hc(fit, ci = TRUE, multi_est = FALSE, multi_ci = FALSE, weighted = TRUE)

hc4
#> # A tibble: 1 x 11
#> dist proportion est se lcl ucl wt method nboot pboot samples
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <I<lis>
#> 1 average 0.05 0.192 0.214 0.0181 0.816 1 paramet~ 1000 0.999 <dbl>

Here, the argument “weighted = TRUE” specifies to take bootstrap samples from each distribution
proportional to its weight (so that they sum to nboot).

Comparing bootrapping methods

We have undertaken extensive simulation studies comparing the implemented methods, and the results
of these are reported elsewhere. For illustrative purposes, here we compare upper and lower confidence
intervals using only a single example data set, the Silver data set from the Canadian Council of Ministers
of the Environment (ccme).

Using the default settings for ssdtools, we compared the upper and lower confidence intervals for the four
bootstrapping methods described above. Estimate upper confidence limits are relatively similar among
the four methods. However, the lower confidence interval obtained using the weighted arithmetic mean
(the method implemented in earlier versions of ssdtools) is much higher than the other three methods,
potentially accounting for the relatively poor coverage of this method in our simulation studies.

library(ggplot2)
library(ggpubr)
p1 <- ggplot(compare_dat, aes(method, ucl, fill = method)) +

geom_bar(stat="identity", position=position_dodge()) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

p2 <- ggplot(compare_dat, aes(method, lcl, fill = method)) +
geom_bar(stat="identity", position=position_dodge()) +

theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

ggarrange(p1, p2,common.legend = TRUE)
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Given the similarity of upper and lower confidence intervals of the weighted bootstrap sample method
compared to the potentially more theoretically correct, but computationally more intensive weighted
mixture method (via ssd_rmulti()), we also compared the time taken to undertake bootstrapping across
the methods.

Using the default 1,000 bootstrap samples, the elapsed time to undertake bootstrapping for the mixture
method was 29.07 seconds, compared to 2.66 seconds for the weighted bootstrap sample. This means that
the weighted bootstrap method is ~ 11 times faster, representing a considerable computational saving
across many SSDs. For this reason, this method is currently set as the default method for confidence
interval estimation in ssdtools.

p3 <- ggplot(compare_dat, aes(method, time, fill = method)) +
geom_bar(stat="identity", position=position_dodge()) +
ylab("Elapsed time (seconds)") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

p3
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Customising Plots
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2024-05-17

Plotting the cumulative distribution

The ssdtools package produces a plot of the cumulative distribution functions for the multiple input
distributions through the use of the ssd_plot_cdf() function. For example, consider the boron data.
We can fit, and then plot the cdf using:

library(ggplot2)
library(ssdtools)

fits <- ssd_fit_dists(ssddata::ccme_boron)
gp <- ssd_plot_cdf(fits)

print(gp)
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This graphic is a ggplot object and so can be saved and embellished in the usual way.

1

https://ggplot2.tidyverse.org


Customising the cumulative distribution plot

Plot the model-averaged fit with individual fits

We can add the model-averaged cdf by first obtaining predicted values, and extending the default ssdtools
ggplot in the usual way using geom_line:

library(ssddata)
library(ssdtools)
library(ggplot2)

dist <- ssdtools::ssd_fit_dists(ssddata::ccme_boron)
pred <- predict(dist, ci = FALSE)
boron_hc5 <- ssd_hc(dist)
ssdtools::ssd_plot_cdf(dist) +

geom_line(data = pred, aes(x = est, y = proportion, colour = "Model average", lty = "Model average"), lwd = 0.75) +
scale_linetype_manual(name = "Distribution", breaks = c("Model average", names(dist)), values = 1:7) +
scale_color_manual(name = "Distribution", breaks = c("Model average", names(dist)), values = 1:7) +
theme_bw()
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Other customisations

The ssdtools package provides four ggplot geoms to allow you construct your own plots.

The first is geom_ssdpoint() which plots species sensitivity data

ggplot(ccme_boron) +
geom_ssdpoint(aes(x = Conc)) +
ylab("Probability density") +
xlab("Concenration")
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The second is geom_ssdsegments() which plots the range of censored species sensitivity data

ggplot(ccme_boron) +
geom_ssdsegment(aes(x = Conc, xend = Conc * 2)) +
ylab("Probability density") +
xlab("Concenration")
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The third is geom_xribbon() which plots species sensitivity confidence intervals

ggplot(boron_pred) +
geom_xribbon(aes(xmin = lcl, xmax = ucl, y = proportion)) +
ylab("Probability density") +
xlab("Concenration")
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And the fourth is geom_hcintersect() which plots hazard concentrations

ggplot() +
geom_hcintersect(xintercept = c(1, 2, 3), yintercept = c(0.05, 0.1, 0.2)) +
ylab("Probability density") +
xlab("Concenration")
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They can be combined together as follows

gp <- ggplot(boron_pred, aes(x = est)) +
geom_xribbon(aes(xmin = lcl, xmax = ucl, y = proportion), alpha = 0.2) +
geom_line(aes(y = proportion)) +
geom_ssdsegment(data = ccme_boron, aes(x = Conc / 2, xend = Conc * 2)) +
geom_ssdpoint(data = ccme_boron, aes(x = Conc / 2)) +
geom_ssdpoint(data = ccme_boron, aes(x = Conc * 2)) +
scale_y_continuous("Species Affected (%)", labels = scales::percent) +
expand_limits(y = c(0, 1)) +
xlab("Concentration (mg/L)")

print(gp + geom_hcintersect(xintercept = boron_hc5$est, yintercept = 5 / 100))
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To log the x-axis add the following code.

gp <- gp + coord_trans(x = "log10") +
scale_x_continuous(

breaks = scales::trans_breaks("log10", function(x) 10ˆx),
labels = comma_signif

)
print(gp + geom_hcintersect(xintercept = boron_hc5$est, yintercept = 0.05))
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The most recent plot can be saved as a file using ggsave(), which also allows the user to set the
resolution.

ggsave("file_name.png", dpi = 600)

Fitting and plotting distributions to multiple groups such taxa and/or chem-
icals

An elegant approach using some tidyverse packages is demonstrated below.

library(ssddata)
library(ssdtools)
library(ggplot2)
library(dplyr)
library(tidyr)
library(purrr)

boron_preds <- nest(ccme_boron, data = c(Chemical, Species, Conc, Units)) %>%
mutate(

Fit = map(data, ssd_fit_dists, dists = "lnorm"),
Prediction = map(Fit, predict)

) %>%
unnest(Prediction)

The resultant data and predictions can then be plotted as follows.

library(ssdtools)
library(ssddata)
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ssd_plot(ccme_boron, boron_preds, xlab = "Concentration (mg/L)", ci = FALSE) +
facet_wrap(~Group)
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Embellishing Plots with an Exposure Distribution

For example, suppose we want to superimpose an environmental concentration cumulative distribution
and compute the exposure risk as outlined in Verdonck et al. (2003).

Finding a suitable probability distribution to describe the exposure concentration is beyond the scope
of this document – we will assume that this has been done elsewhere. In particular, suppose that the
exposure concentration follows a log-normal distribution with a mean of -2.3 and a standard deviation
of 1 on the logarithmic scale. From the exposure distribution, we construct a data frame with the
concentration values and the cumulative probability of seeing this exposure or less in the environment.

Notice that some care is needed because the ssdtools plot is on the logarithmic base 10 scale and not the
natural logarithm base e scale.

ex.cdf <- data.frame(Conc = exp(seq(log(.01), log(10), .1))) # generate a grid of concentrations
ex.cdf$ex.cdf <- plnorm(ex.cdf$Conc,

meanlog = ex.mean.log,
sdlog = ex.sd.log

) # generate the cdf

We now add this to the plot

gp +
geom_line(data = ex.cdf, aes(x = Conc, y = ex.cdf), color = "red", linewidth = 2) +
annotate("text",

label = paste("Exposure distribution"),
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x = 1.08 * ex.cdf$Conc[which.max(ex.cdf$ex.cdf > 0.5)], y = 0.5, angle = 75
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The ssdtools package contains a function ssd_exposure() that computes the risk as defined by Ver-
donck et al (2003) representing the average proportion of species at risk.

set.seed(99)
ex.risk <- ssd_exposure(fits, meanlog = ex.mean.log, sdlog = ex.sd.log)
ex.risk

## [1] 0.0062416

The risk of 0.00624 can also be added to the plot in the usual way:

gp +
geom_line(dat = ex.cdf, aes(x = Conc, y = ex.cdf), color = "red", linewidth = 2) +
annotate("text",

label = paste("Exposure distribution"),
x = 1.08 * ex.cdf$Conc[which.max(ex.cdf$ex.cdf > 0.5)], y = 0.5, angle = 75

) +
annotate("text",

label = paste("Verdonck risk :", round(ex.risk, 5)),
x = Inf, y = 0, hjust = 1.1, vjust = -.5

)
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Small sample bias

The ssdtools package uses the method of Maximum Likelihood (ML) to estimate parameters for each
distribution that is fit to the data. Statistical theory says that maximum likelihood estimators are
asymptotically unbiased, but does not guarantee performance in small samples. A detailed account of
the issue of small sample bias in estimates can be found in the following pdf.

The inverse Pareto and inverse Weibull as limiting distributions of the Burr
Type-III distribution

Burr III distribution

The probability density function, fX(x; b, c, k) and cumulative distribution function, FX(x; b, c, k) for the
Burr III distribution (also known as the Dagum distribution) as used in ssdtools are:

Inverse Pareto distribution

Let X ∼ Burr(b, c, k) have the pdf given in the box above. It is well known that the distribution of
Y = 1

X is the inverse Burr distribution (also known as the SinghMaddala distribution) for which:

fY (y; b, c, k) = c k( y
b )c

y [1+( y
b )c]k+1 b, c, k, y > 0

FY (y; b, c, k) = 1 − 1
[1+( y

b )c]k b, c, k, y > 0

We now consider the limiting distribution when c → ∞ and k → 0 in such a way that the product ck
remains constant, i.e. ck = λ.

Now,
lim
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ck=λ
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Therefore,
lim

(c,k)→(∞,0)
ck=λ

{FY (y; b, c, k)} = 1 −
(

b
y

)λ

y ≥ b

which we recognise as the (American) Pareto distribution. So, if the limiting distribution of Y = 1
X

is a Pareto distribution, then the limiting distribution of X = 1
Y is the (American) inverse Pareto

distribution:

fX (x; α, β) = λbλxλ−1; 0 ≤ x ≤ 1
b ; λ,b > 0

FX (x; α, β) = (xb)λ; 0 ≤ x ≤ 1
b ; λ,b > 0

For completeness, the MLEs of this distribution have closed-form expressions and are given by:

λ̂ =
[
ln
(

gX

b̂

)]−1

b̂ = 1
max{Xi}

and gX is the geometric mean of the data.

Inverse Weibull distribution

Let X ∼ Burr(b, c, k) have the pdf given in the box above. We make the transformation

Y = bk
1
c θ

X

where θ is a parameter (constant). The distribution of Y is also a Burr distribution and has cdf

GY (y) = 1 − 1[
1 +

(
y

k
1
c θ

)c]k

.We are interested in the limiting behaviour of this Burr distribution as k → ∞. Now,

lim
k→∞

GY (y) = 1 − lim
k→∞

[
1 +

(
y

k
1
c θ

)c]−k

= 1 − lim
k→∞

[
1 +

(
y
θ

)c

k

]−k

= 1 − exp
[
−
(

y
θ

)c]{
using the fact that lim

n→∞
(1 + z⧸n )−n = e−z

}
We recognise the last expression as the cdf of a Weibull distribution with parameters c and θ.
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