
2012). A tabulation of the details for 60 cases shows the variety
of guises in which the error appears. These include multiway
contingency tables aswell asmultiwayANOVAs.Amajor cause
of pseudofactorialism is the widespread failure of statistical
texts, the primary literature, and documentation for statistics
software to distinguish the 3major components of experimental
design—treatment structure, design structure, response struc-
ture (see Hurlbert 2013)—and clearly and correctly define key
terms such as experimental unit, evaluation unit, split unit,
factorial, and repeated measures.
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The ubiquity and pervasiveness of the species sensitivity
distribution (SSD) in ecotoxicology has beenwell documented
(Posthuma et al. 2002 and references therein). Articles have
been published on many facets of the SSD modeling approach
including, but not limited to

• Assumed randomness of the sample of species used to
generate the data

• Limitations and difficulties due to extremely small sample
sizes

• Mathematical and statistical considerations to do with
functional form of the SSD, estimation strategies, and the
inferential framework for a derived HCx

Although the assumption of randomness has been univer-
sally acknowledged (Forbes and Forbes 1993; Van der Hoeven
2004; ECHA 2008) as a necessary and key requirement
demanded by statistical theory to ensure the validity of the
approach, little or nothing has been done to address the

invariable violations of this assumption in practice. Indeed,
the advice given inmostguidelinedocumentsactually guarantees
nonrandomness. For example, the revised Australian and New
Zealand Water Quality Guidelines recommend using toxicity
data from at least 8 species from at least 4 taxonomic groups
(Batley et al. 2014). Such purposive sampling is the antithesis of
randomness. To further complicate matters, there has been a
complete absence of any studies to quantify and describe the
impact nonrandom species selection has on the fitted SSD and
quantities (such as the HCx) subsequently derived from it.

Motivated by this gaping hole in current ecotoxicological
practice and my involvement in the preparation of Australia’s
revised guidelines, which recommended further research be
undertaken on this unresolved issue, I took up the challenge. In
a recent article I detail the results of those investigations (Fox
2015). At least initially, I have only investigated what happens
to an SSD assumed to follow a log‐logistic distribution when
the selection of species used to generate the sample data has
been biased. Using the very flexible beta distribution to
characterize the selection function, it has been shown that the
actual distribution arising from nonrandom sampling is F. This
important result is conveniently and compactly summarized as
follows.

The actual distribution when an assumed log‐logistic
SSD having parameters (a,b) is used to describe toxicity
data (X) that have been selected according to a beta
distribution with parameters (a,b) is a modified F distribu-
tion given by the probability density function (PDF)

gx x; a; b;a;bð Þ ¼ b b
a a

x
a

� �b�1dF b
a

x
a

� �b
;2a;2b

h i
where the nota-

tion dF �; v1; v2ð Þ denotes a standard F distribution having v1
and v2 degrees of freedom. A requirement satisfied by this
PDF is that when species selection is truly random
(corresponding to the special case of the beta distribution
with a¼b¼ 1) the distribution is the assumed log‐logistic.

A useful outcome of this result is that it is possible to
construct a bias correction factor (BCF), which adjusts the
HCx derived from the fitted SSD to compensate for the
nonrandom selection of species data. This BCF is readily
computed using intrinsic functions found in Microsoft Excel.
Analysis of the BCF for various selection function shapes
suggests that, if the toxicity data are biased toward the more
sensitive species as has been suggested (Versteeg et al. 1999),
then the common practice of using the lower limit of a
confidence interval for the estimated HCx may be compensat-
ing in the wrong direction. As I note (Fox 2015), this is an issue
that requires further research and evaluation as the implica-
tions for what has hitherto been understood to be a “protective
concentration” may be profound. For example, the SSD
methodology is routinely used in Australia to determine a
“safe” dilution for effluents from wastewater treatment plants
and desalination plants. This, in turn, dictates the depth of an
ocean outfall to achieve that dilution. Given that nonrandom
species selection for the SSD can result inHCx errors of a factor
of 20 or more, it is apparent that either the environmental or
monetary cost is potentially significant depending on the
direction of this error.
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INTRODUCTION
There is considerable momentum to move away from using

NOECs to evaluate ecotoxicity studies to regression models.
However, regression models have limitations that are some-
times poorly addressed in regulatory guidelines and by
scientists trying to meet those guidelines. Tools for evaluating
regression models are available and there are numerous
examples of problematic data and also some types of data
for which no models are currently available.
The distribution of effect concentration x (ECx) estimates

from carefully designed simulation studies is a critical
evaluation tool and supplements more traditional model

selection tools such as Akaike’s Information Criteria with
finite sample correction (AICc) (Motulsky and Christopoulos
2004), lack‐of‐fit tests comparing error about regression to
pure error, diagnostic plots, confidence interval width,
sensitivity analysis, and common sense, an underused concept.
The NOEC often provides good information when no sound
regression model exists.

DISCUSSION
Ecotoxicity data sometimes need to be transformed before

analysis to satisfymodel requirements. Traditionalmodels often
assume normality and variance homogeneity of the response;
failure to satisfy those requirements can bias the estimated ECx.
When data are transformed, the meaning of an x% effect
changes. For example, a 20%change in the logarithmof length is
not equivalent to a 20% change in length. In analyzing the
proportion of seeds that emerge or eggs that hatched or
phenotypically male fish exposed as embryos to an endocrine
disrupting chemical, the need for a normalizing, variance
stabilizing transform before the use of statistical hypothesis
testing or traditional modeling is well known. This is not a
concern for hypothesis testing, but it is for regression modeling.
Alternative generalized linear mixed models (GLiMM) can be
used for proportion data (Cameron and Trivedi 2013). Similar
rethinking is needed for other types of responses.
Another key requirement of almost all models is that

observations should be independent. For nontarget plant
studies, the International Organization for Standardization
(ISO 2005) advises normalizing responses to the control,
expressing for example, the number of emerged seedlings for
each pot as a percentage of the mean emerged in control pots.
The normalized response is

Pnij ¼ Pij � P0

P0
;

where P0 is the control mean and Pij is the mean of the
jth replicate of the ith treatment. Because these ratios all have
the control mean, a random variable, in the denominator, they

Figure 1. Dry weight of oat plants in a vegetative vigor study. WGT¼oat dry weight in grams; Predicted¼ the fittedmodel; LCB95 and UCB95¼pointwise 95%
confidence bounds for the predicted values (respectively lower and upper bounds), application rates in grams per hectare.
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