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Abstract: The no-effect concentration (NEC) is the preferred threshold metric for single-species toxicity tests applied to
derive safe concentration thresholds for contaminants in the environment for use in species sensitivity distributions. However,
the NEC is only suitable when concentration-response (C-R) data exhibit a threshold response. We describe an alternative
toxicity estimate, the no-significant-effect concentration (NSEC), which is better suited to C-R data for which the response is a
monotonically decreasing function of concentration and no threshold effects are evident. We use a flexible, three-parameter
sigmoidal function to describe the C-R relationship and detail both Bayesian and frequentist approaches to estimation and
inference for the NSEC. While the NSEC is conceptually linked to the traditional no-observed-effect concentration (NOEC), it
is a substantial improvement over the NOEC because it decouples the estimate from being directly dependent on the
placement of treatment concentrations as well as admitting statements of precision of the resulting toxicity estimate. Environ
Toxicol Chem 2023;42:2019-2028. © 2023 Commonwealth of Australia and The Authors. Environmental Toxicology and
Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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concentration which is hazardous to x% of all species or the
concentration that is protective of (100 — x)% of all species.

Although the SSD methodology elevated the statistical rigor
associated with the protection of the aquatic environment, it
has not been without controversy. While not wishing to revisit
the debates surrounding the use of SSDs, it is fair to say that
the most troublesome aspects are (1) the pathologically small
sample sizes involved; (2) the lack of any biological, ecological,
or environmental theory to inform the selection of SSD dis-
tributional form; (3) the inevitable nonrandomness of species
selection; and (4) the choice of toxicity metric(s) used to fit the
SSD, which is the subject of this communication. Further dis-
cussion about the strengths and weaknesses of the SSD
methodology may be found in Fox (2016) and references
therein.

Despite these issues, the SSD is the only available objective
and quantitative means by which species protection values can

INTRODUCTION

The species sensitivity distribution (SSD) has been a
cornerstone of ecotoxicological practice for the past 30 years
(Kooijman, 1987; Stephen et al, 1985; van Straalen &
Denneman, 1989). It was introduced by ecotoxicologists to
overcome (or at least reduce) the subjectivity associated with
the arbitrary scaling of laboratory toxicity estimates to derive
“safe” or “protective” concentrations of contaminants in the
natural aquatic environment. At its heart, the SSD is nothing
more than a theoretical cumulative distribution function fitted
to a sample of toxicity values obtained from a small number of
“randomly” selected species. A low-order quantile (typically
1%, 5%, 10%, or 20%) from the fitted distribution is used to
establish an upper concentration limit for a specific chemical in
the receiving environment. This limit is referred to either as the
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be derived (Fox et al., 2021), and it remains a critical tool for
environmental regulation in Australia (Wamne et al., 2018)
and elsewhere (British Columbia Ministry of Environment and
Climate Change Strategy, 2019).

The primary use of the SSD is to estimate the concentration
below which a high fraction of all species is expected to show
no “effect” (e.g., death). Thus, the data on which the SSD is
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based are the highest concentrations at which different species
are not adversely affected by the toxicant under investigation.
An obvious candidate for this metric was the no-observed-
effect concentration (NOEC). The NOEC is the largest test
concentration for which the observed difference between the
mean response at that concentration and the mean response
for the controls is not statistically significant. The NOEC is
widely used as a measure of the no-effect toxicity value.

Again, we do not wish to dwell on the long and sustained
criticisms of the NOEC as a measure of chronic toxicity. These
have been well documented in the ecotoxicology literature
(Fox, 2008; Van Der Hoeven et al., 1997), with more recent calls
for them not to be used at all (Fox & Landis, 2016; Van Dam
et al., 2012; Warne & Van Dam, 2008). The main concerns with
NOECs are that (1) they are constrained to be one of the test
concentrations chosen by the researcher, (2) poor experiments
favor larger NOECs (i.e, more liberal rather than more stringent
values), (3) they make no use of the relationship between
concentration and response, (4) statements of precision are not
possible, and (5) they are dependent on the selection of a
significance level for statistical testing. A measure which is
immune to the drawbacks (1-5) is the no-effect concentration
(NEC; Fox, 2010). The NEC is the concentration at which there
is a response and can be estimated as one of the parameters in
a threshold model. An example is the model used by Pires et al.
(2002), which relates the response (Y) to concentration (x) such
that Y'is constant from x= 0 up to a threshold, y (the NEC), and
thereafter exhibits an exponential decay (Fox, 2010; Pires
et al., 2002).

While the NEC has found wide applicability and can be
readily estimated using both frequentist (e.g., the R package
drc; Ritz et al., 2015) and Bayesian (Fisher et al., 2020, 2023;
Fox, 2010) methods, it is predicated on the assumption that the
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biological response exhibits a threshold effect at low concen-
trations (Figure 1)—an assumption that is not always supported
by the data or biological theory.

In the present study, we describe the no-significant-effect
concentration (NSEC) as a simple alternative to the NEC in
situations where there is no threshold effect in the response
(Figure 1). The NSEC is similar in spirit to the NOEC while
avoiding most of the drawbacks mentioned above. The NSEC
is estimated from a monotonically decreasing model as the
highest concentration for which the difference between the
predicted response at that concentration is statistically
insignificant from the predicted response at zero concentration.

The remainder of our study is structured as follows: We
begin with a brief review of both effect and no-effect toxicity
metrics to provide context. We follow with a conceptual in-
troduction to the NSEC as well as a detailed section outlining
NSEC estimation and inference. We describe both the fre-
quentist and Bayesian approaches and illustrate this using
worked examples. Finally, we discuss some of the issues as-
sociated with the use and estimation of the NSEC.

A BRIEF REVIEW OF EFFECT AND
NO-EFFECT TOXICITY METRICS

The effect concentration

The ECx is that concentration at which the predicted re-
sponse (survival, growth, etc.) represents an x% "effect” rela-
tive to the control. When concentration-response (C-R) data
exhibit a smooth decline, the EC10 is generally considered a
good/acceptable estimate of a “low” toxicity effect (Warne
etal., 2015, 2018). It also has the advantage of being relatively
easy to compute (Van Der Hoeven et al., 1997). However, its

No threshold
—— Threshold

10 15 20
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FIGURE 1: Conceptual comparison of a concentration—response curve with (cyan) and without (red) a threshold effect.
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use in SSD modeling is more problematic. By definition, an ECx
represents an effect and is thus conceptually inconsistent with
the objective of SSD modeling, which aims to protect some
high fraction of all species in an ecosystem by not causing any
effect (Warne et al., 2018). Nevertheless, ECx data are routinely
used in SSD modeling, although this remains a divisive issue
(Green et al., 2013).

The NEC

As previously mentioned, the estimation of an NEC as-
sumes the existence of a threshold effect in the C-R data. Of
all the measures of no or low toxicity, the NEC is the preferred
metric (Warne et al., 2018). Various C-R threshold models
have been proposed (e.g., those found in the R package
“drc”; Ritz et al., 2015), although they all have the generic
form of Equation 1.

y =61 = I(x; 8)] + f(x; ©)I(x; 6y) M

In Equation 1, © = {60, 6y, ..., B,-1} is a vector of parameters, 6,
is the NEC, 6y is the response for concentrations below the
NEC, f(x; ©) is a function that describes the response at con-
centrations above the NEC, and I(.) is the indicator function:

1 if x> 6,
0 otherwise

I(x; 6) = { @)
A Bayesian approach to estimation and inference for the NEC
(v in Equation 3) of the simple exponential-threshold model
described in Pires et al. (2002) was outlined by Fox (2010). This
model has the functional form given by Equation 3

y=Hxia, B y)te
where
p(xi; a, B, y) = aexp[-B(x; = y)I(x; y)]; {a, B, v}>0
and

&~ N0, 0?) 3)

The parameters of Equation 3 are also readily estimated using
maximum likelihood methods in the “drc” package via the
function NEC.3 (Ritz et al., 2015).

The NOEC

The NOEC is that concentration, ¢, among the set of con-
centrations {cp < ¢; < -+ < ¢} such that the mean responses at
concentrations {¢; < ¢, < --- < ¢} are statistically indistinguish-
able from the mean response at concentration co. The identi-
fication of ¢ is usually made using Dunnett's test following a
one-way analysis of variance of the null hypothesis:

Ho: o= th= = lh

THE NSEC

Jurisdictions around the world have grappled with providing
guidance on which toxicity metric(s) should be used for SSD
modeling. In Australia and New Zealand the most recent advice
is that a NEC is the preferred measure, followed by a low-order
"effect” metric such as the ECx, the x% inhibition concen-
tration, or x% lethal concentration, with x £ 10 and the NOEC
being the least preferred (Warne et al., 2015, 2018). There are
difficulties with each of these, which we discuss in turn.

Firstly, we agree that the NEC should be the default
measure when the C-R data indicate a threshold in the re-
sponse. In the absence of any discernible threshold or where
biological considerations rule this out, the estimated NEC is
not an estimate of a concentration for which there is “no ef-
fect.” In other words, the estimated NEC is spurious. Secondly,
using a low-order effect concentration is, as already mentioned,
logically inconsistent with the objectives of SSD modeling; and,
on that basis, we recommend against using ECx data for SSD
modeling. Finally, although one of us (D. R. Fox) along with
many others has been part of the chorus of calls to stop using
NOECs, we acknowledge that the inertia to heed those calls
may in part be because the NOEC has a certain intuitive ap-
peal. This is perhaps tied to the “NO” part of the NOEC
acronym—it is a concentration below which no (statistically)
discernible effect (relative to a notional “control”) was ob-
served. Statistical significance has long been used by environ-
mental scientists as a surrogate for biological significance
owing to the difficulty in defining the latter.

In view of the foregoing, we describe an alternative toxicity
metric, the NSEC, to cater for those instances where the em-
pirical dose-response relationship has no threshold and/or a
threshold effect is biologically untenable. Figure 2 illustrates
the relationships between the various toxicity metrics as well as
the Bayesian NSEC estimate, which we discuss later. The idea
was initially proposed by Bellio et al. (2000) and further de-
veloped by Chévre et al. (2002), who termed the concept the
statistical-no-effect concentration. While proposed more than
20 years ago, the concept has gained little traction in the
ecological community, despite its potential value in providing a
no-effect toxicity estimate in the absence of threshold effects.
In the following sections, we describe the NSEC and provide
details of both Bayesian and frequentist methods of inference.

ESTIMATION AND INFERENCE FOR
THE NSEC

To motivate the discussion, consider the fish growth data
given in Table 1 and shown in Figure 3. The data are growth
rate, over a period of months at different concentrations of a
pollutant. These data are hypothetical but serve as a useful
starting point for the introduction of the NSEC concept based
on data suitable for a normally distributed error function, for
which computations can be simplified.

Using ordinary least squares (OLS), the parameters of a
sigmoidal response model given by Equation 4 can be esti-
mated. The resultant fit is shown by the red line in Figure 3.
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FIGURE 2: Conceptual diagrams of commonly used toxicity estimates, including (A) no-effect-concentration (NEC) model-based
concentration-response (C-R) curve, showing the difference between a NEC and 10% effect concentration (EC10) toxicity estimate; (B) sig-
moidal model-based C-R curve, showing the EC10; (C) treatment-based analysis estimating the no-observed-effect concentrations; and (D) sig-
moidal model-based C-R curve, showing the EC10 and the derivation of an interpolated no-significant-effect concentration, with the dashed black
line indicating the lower first percentile of the Bayesian posterior predictions for the control. NOEC = no-observed-effect concentration; NSEC = no-

significant-effect concentration.

In addition, with the assumption of a normally distributed error
function, confidence intervals for the parameter estimates as
well as the mean response can be computed (blue lines in
Figure 3).

Y: = Bo eXp[-Bmﬁz] + &

(4)

(6o, B, B2} > 0; & ~ N(0, 0?)
It is evident from Equation 4 that the 8y parameter represents
the mean response at zero concentration (the “control” group).
For the fitted model in Figure 3, Bo = 6.2 with a standard error
of 0.3059. Upper and lower limits of the 0% confidence in-
terval for Bg are [5.67, 6.73] Thus, a response as low as 5.67 is
indistinguishable from the mean response of the control group
at the 5% level. A (modeled) mean response of 5.67 corre-
sponds to a concentration of 5.38, and this concentration

TABLE 1: Fish growth across a range of concentrations of an unknown
pollutant

Growth (cm)

Concentration Rep 1 Rep 2 Rep 3
0 6.59 6.14 7.19
1 4.91 5.03 6.25
2 5.89 7.44 6.11
5 4.51 6.75 5.69
" 4.52 5.52 3.71
25 2.54 1.76 0.21
50 0.10 0 0.91

There are three independent replicates for each concentration treatment.
Rep =replicate.

becomes the NSEC. By way of comparison, the NOEC
estimated using a one-sided Dunnett's test at the 5% level
is 11.

This example illustrates how the NSEC can be routinely
computed using standard statistical software for a ratio-level
response. While this is appropriate when the endpoint in a
toxicity test is a measured quantity such as weight or length,
modifications are required for quantal responses such as
number of hatchlings, germination success, survival, or some
categorical measure of impact.

In the following sections, we develop both Bayesian and
frequentist methods to estimate the NSEC for a dichotomous
response variable.

Frequentist estimation

We assume a data structure of the following form: {Y; =
number of “successful” outcomes out of n; replications of an
experiment at concentration xi.

Our assumed model is given by Equation 5 and is one which
we have frequently fitted to C-R curves in our own ecotoxico-
logical testing.

Y: ~ bin(m, n;)

where

(s Bo. B, B2) = Bo exp| ~Bix|: (B0 B1 B >0 (9)

Equation 5 is an example of a generalized nonlinear model in
which the probabilities, 1, are not expressible in the form
g(m) = n;, where n; is a linear function of the parameters and
g(-)is some monotone, differentiable function. Nevertheless, it

© 2023 Commonwealth of Australia and The Authors
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FIGURE 3: Fish growth data (solid circles). Red curve is estimated mean response function given by Equation 4. Blue lines denote limits of 90%
confidence interval for mean response; 90% prediction band is represented by the shaded region. Horizontal dashed line is at the lower limit of the
confidence interval for concentration =0, and vertical dashed line is at the corresponding concentration.

is relatively straightforward to develop the necessary equations
to obtain the maximum likelihood estimates (MLEs) for the
parameter vector B = (B, B1, B2)| as described in Supporting
Information, Appendix A.

We illustrate the computations necessary for estimating
the NSEC using maximum likelihood (frequentist) methods
with an example that relates to assessing the impact of
treated effluent on germination success. The data in Table 2
represent the number of successful germinations, Y;, out of N;
seedlings of a species of macroalga when exposed to various
concentrations, x; of a treated effluent. Three replications
of the experiment were performed at each concentration.
While these data are based on real assays, they are from
historic confidential reports which cannot be shared
publicly. They do, however, serve as a useful example to
demonstrate the frequentist derivation of the NSEC for a
binomial example.

The assumed model for Y; is given by Equation 5.
The OLS estimates of the parameters of Equation 5

e B =10.8035; 9.865 x 1075; 3.0786}. Using the R code
in  Supporting _Information, Appendix A, the MLE is
computed as B = {0.79997; 3.5472 x 1074; 2.6278}. A plot
of the data and fitted curves is shown in Figure 4A.

Although the fitted curves of Figure 4A are very similar in
appearance, the toxicity estimates from the OLS fit are be-
tween 5% and 10% higher than those from the MLE fit
(Table 3). For comparison, the NOECs have also been listed in
Table 3, and the inadequacy of this toxicity estimate is evident.
For example, at the 99% level of confidence, the NOEC is 30%
to 40% higher than either of the NSEC values. Furthermore, the

NOEC shows no variation, with confidence levels between 80%
and 95%. In fact, the NOEC for 55% confidence is the same as
the NOEC for 95% confidence (=10), whereas the NSECMLE) for
55% confidence is 4.14.

TABLE 2: Number of successful germinations (response) out of n seeds
of a species of macroalga when exposed to various concentrations of a
treated effluent

Concentration Rep 1 Rep 2 Rep 3
0.1

Seeds 13 14 12

Germinations 9 11 10
5

Seeds 12 8 8

Germinations 8 7 8
10

Seeds 10 7 11

Germinations 8 4 9
15

Seeds 8 12 13

Germinations 6 7 6
20

Seeds 11 11 7

Germinations 2 3 2
25

Seeds 13 10 11

Germinations 1 1 2
30

Seeds 9 12 13

Germinations 1 1 1

Three replications of the experiment were performed at each concentration.
Rep =replicate.
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FIGURE 4: Concentration-response model of Equation 5, with parameters estimated by ordinary least squares (red curve, A), maximum likelihood
estimate (MLE; blue curve, A), and Bayesian Markov Chain Monte-Carlo (MCMC; blue curve, B). Vertical lines are (left to right) no-significant-effect
concentrations at 20%, 10%, 5%, and 1% estimated from the MLE fit (A) and MCMC fits (B).

In the following sections we describe a more flexible Baye-
sian approach to the estimation of an NSEC by accom-
modating any user-specified model and error structure.

Bayesian estimation

It is true that frequentist methods have dominated the eco-
toxicological landscape, although the pace of development and
uptake in the use of Bayesian methods has accelerated over the

past 10 years (see Billoir et al., 2008; Fisher et al., 2020, 2023;
Pollino & Hart, 2005). This is largely attributable to the ready
availability of Bayesian software tools including WinBUGS (Lunn
et al., 2000), JAGS (Plummer, 2003), and Stan (Carpenter
et al., 2017). Still, impediments to the widespread uptake of
these Bayesian software tools exist (Fisher et al., 2019). There is a
range of “enabler” packages such as R2ZWinBUGS, R2jags (Su
et al., 2015), and RStan (2022) that allow these Bayesian tools to
be called within R. While these still require model specification,

© 2023 Commonwealth of Australia and The Authors
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TABLE 3: Comparison of the no-significant-effect concentration esti-
mate for the data shown in Figure 4 (Table 2)

Lower confidence bound (%); significance level

Toxicity estimate 99, 0.01 95;0.05 90;0.10 80, 0.20
NSEC
MLE 10.7 9.14 8.22 6.93
(present study)
oLS 1.2 9.82 8.97 7.75
MCMC 10.5 8.78 7.84 6.51
(present study)  (6.15-13.6) (0-12.1) (0-11.5) (0-10.7)
NOEC
Dunnett's test 15 10 10 10

Included are estimates based on 99%, 95%, 90%, and 80% bounds of the control
(equivalent to a 0.01, 0.05, 0.10, and 0.20 significance level, respectively). The
NSEC was calculated using OLS, MLE, as well as Bayesian MCMC. The NOEC
values based on Dunnett's test are shown for comparison.

OLS=ordinary least squares; MCMC=Markov chain Monte Carlo; MLE=
maximum likelihood estimate; NOEC =no-observed-effect concentration;
NSEC = no-significant-effect-concentration.

which does involve some nontrivial coding, the rapid expansion
of these and similar packages within the R community is greatly
increasing accessibility of Bayesian methods. We are involved in
several projects aimed at even further simplifying C-R model
fitting using Bayesian tools (Fisher et al., 2020, 2023).

In the present study, we used the R2Jags package to fit the
Bayesian version of the sigmoidal model in Equation 5 to the
data from Table 3 as a way of demonstrating the Bayesian
implementation of the NSEC concept. The full R code for
running this example can be found in Supporting Information,
Appendix B.

We start by defining the BUGS model ASCII file required to
run JAGS:

model
{

# likelihood

for (i in 1:N)

{
thetalil<-b0*exp(-b 1*(x[i)*b2)
# response is binomial
ylil~dbin(thetali], trials[i])

}

# specify model priors

b0 ~ dunif(0.0001,0.999)

b1 ~ dgamma(0.0001,0.0001)

b2 ~ dnorm(1, 0.0001)

The components of the BUGS model are a likelihood func-
tion; a function describing the relationship between the
probability of a “success” and concentration; and priors dis-
tributions for the model parameters. The mean response, theta,
is modeled as a function of x (concentration) via the ex-
ponential function given in Equation 5. We specify the priors
for the intercept (b0) as uniform (0.0001, 0.999), for the

exponential slope coefficient (b1) as gamma (0.0001, 0.0001),
and for the exponent (b2) as normal (1, 0.0001). Running this
model in R is relatively straightforward using the jags function
in the R2jags package (Su et al., 2015) and can be achieved
using the following R code:

library(R2jags)
dat <- read.csv(“table 2.csv”)

model_file <- “jags_model.txt”

# create jags model data list

mod.dat <- list(

x = dat$concentration, # concentration
y= dat$response, # response (successes)
N = nrow(dat), # Sample size

trials = dat$n # binomial trials

)

params <- ¢("b0”, "b1”, "b2")

fit <- jags(data = mod.dat, parameters = params, model = model_file)

The data are passed to JAGS as a list of the concentration
data (x) and the response data (y), with trials specified as the
number of observations per replicate. The sample size is the
total number of rows in the data (Supporting Information,
Appendix B). We fitted the model using the default initial
values generated by JAGS: three chains, 2000 iterations, and a
burn-in of 1000.

From the model fit the posterior draws of the three
parameters b0, b1, and b2 are obtained, with median esti-
mated values of BM™MY = {0.791946; 2.4976 x 1074; 2.7381}.
We can calculate posterior predicted values for a vector of
concentration data (x.seq) for the mean response from the
three parameters, with the following code:

parameter_posteriors <- do.call(“cbind”, fit$BUGSoutput$sims.list[params])
colnames(parameter_posteriors) <- params

head(parameter_posteriors)

x.seq <- seq(0, 35, by=0.01)

y.pred <- apply(parameter_posteriors, MARGIN = 1, FUN = function(r)}{
(1] * exp(-r[2] * (x.seq)\r[3])

)

m.vals <- apply(y.pred, MARGIN = 1, FUN = quantile, probs = 0.5)
up.vals <- apply(y.pred, MARGIN = 1, FUN = quantile, probs = 0.975)
Iw.vals <- apply(y.pred, MARGIN = 1, FUN = quantile, probs = 0.025)

These are summarized as a median across all posterior
draws (red line, Figure 4B), with the upper and lower
confidence limits calculated as the 0.025 and 0.975 quantiles,
respectively (shaded blue area, Figure 4B).

To estimate NSEC using the JAGS output, we first obtain
the appropriate quantiles of the predicted y-intercept, bO,
which is an estimate of the response at the control treatment:

control_quantiles <- quantile(parameter_posteriors[, “b0"],

probs = c(0.01, 0.05, 0.10, 0.20))
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We then use backward interpolation to solve for x given
each control quantile value (rearranging Equation 4):

NSEC_vals <- apply(parameter_posteriors, MARGIN = 1, FUN = function(r){
sapply(control_quantiles, FUN = function(p){x <- (-log(p/r[1IVr[2)(1/13)})
)

We obtain a median of these interpolated values from all
3000 available posterior draws as the estimate of NSEC
(Table 3). The upper and lower 95% credible intervals of the
NSEC can also be obtained as the 0.025 and 0.975 quantiles of
the posterior predicted values of the NSEC obtained from each
posterior draw, noting that the lower bound will be 0 for any
significance level greater than the 0.025 quantile (Table 3). The
Bayesian Markov Chain Monte Carlo (MCMC)-based estimates
for these data are very similar to the MLE estimates, albeit
slightly lower (Table 3).

DISCUSSION

We highlight an alternative toxicity estimate, the NSEC,
suitable for estimating a NEC surrogate when there is no evi-
dence of a threshold effect in the C-R data. The method is
related to the NOEC, in that the estimated no effect is defined
as the concentration at which there is no statistically significant
difference in the response relative to the control concentration.
The NSEC resolves three of the five main concerns identified in
the introduction associated with the use of NOECs. Specifically,
NSECs are not constrained to be one of the test concentrations
chosen by the researcher, they make use of the relationship
between concentration and response, and statements of pre-
cision are possible. In this regard, the NSEC can clearly be
considered a substantial improvement over the NOEC as a
toxicity estimate of no effect. The method retains the intuitive
appeal of the NOEC related to it being a concentration below
which no (statistically) discemible effect (relative to a notional
"control”) was observed. In this sense, the NSEC can still be
considered a valid measure of no effect, unlike the ECx—which
by definition must represent some arbitrarily defined “effect”
and is logically inconsistent with the objectives of SSD
modeling.

The NSEC does not, however, overcome all of the five is-
sues identified with the NOEC. First, poor experiments will
favor larger NSECs (i.e., more liberal rather than more strin-
gent values) because the increased stochastic error will result
in wider confidence bands and thus higher, less conservative
estimates of “no effect.” Second, the estimated NSEC will be
very much influenced by the degree of variability in the con-
trol. Adequately describing this variability requires, among
other things, ensuring that an appropriate statistical dis-
tribution is used for modelling the response variable (Bolker
et al., 2009; Harrison et al., 2018; Szocs & Schafer, 2015). The
chosen distribution should result in a good fit, be consistent
with the likely data-generation process, and appropriately
reflect the variance apparent in the control treatment. In ad-
dition, for quantal response data, it is critical to check for
under- or overdispersion in the response variable and to

contemplate alternatives to the standard binomial or Poisson
distributions (e.g., beta-binomial [Griffiths, 1973] or negative
binomial [Bliss & Fisher, 1953]), if necessary. Furthermore, like
the NOEC, the NSEC will be sensitive to sample size. Because
an experiment with low replication will yield greater un-
certainty in the estimation of the control, an NSEC-based
toxicity estimate will be less conservative. Such issues related
to the impact of experimental design are well understood in
the case of the NOEC (Green et al., 2018) and can presumably
be resolved similarly for the NSEC through clear guidance
on best practice experimental and statistical approaches
for estimating valid NSEC values. While a formal treatment
of optimal design considerations for estimating the NSEC
is beyond the scope of our study, techniques do exist
(Fox, 2016).

Second, like the NOEC, the NSEC is dependent on the
selection of a significance level for statistical testing. The use of
p values in science has been widely criticized (Wasserstein &
Lazar, 2016; Wasserstein et al., 2019), and there have been
calls to move beyond p value-based hypothesis testing in
ecotoxicology (Erickson & Rattner, 2020). However, for the
NOEC (and therefore the NSEC), the use of p values is directly
linked to their intuitive appeal relative to the use of ECx. This is
because defining an appropriate level of statistical significance
is perhaps easier than defining a biologically relevant “effect”
(Green et al., 2013). In our example, as the defined level of
significance is decreased from 99% to 80%, we see the
expected corresponding decrease in the estimated NSEC
concentration, and the toxicity estimate becomes more con-
servative. This would be equivalent to effectively decreasing
the significance value in a Dunnett's test-based NOEC analysis
(as we have done in Table 3) and is counter to the current
Australian recommendations, which indicate that the sig-
nificance level in NOEC testing must be less than at least 0.05
(Warne et al., 2018). In our example, we used a “significance
value” as low as 1%, which is considerably lower than 0.05. The
appropriate level of significance to use for NSEC will be de-
pendent on the specific risk context with due consideration in
the context of relative Type 1 and Type 2 error rates. While
higher values could be considered (and would yield lower,
more conservative NSEC estimates), if the significance value
(alpha) for testing relative to the controls is higher than the
value used to calculate the lower bound of the NSEC estimate
(typically 2.5% for a 95% credible interval), then the estimated
lower bound for the NSEC will be zero. Such an outcome po-
tentially validly reflects the underlying fact that the confidence
bounds of a true no-effect value may in fact contain O because,
for smooth curves, a decline in the response may occur at the
lowest concentration.

The Bayesian MCMC-based estimates of NSEC were very
similar to the MLE estimates in our example, although this is
not always expected to be the case. There are several advan-
tages of using Bayesian methods for calculating NSEC values.
First, it is relatively easy within the currently available Bayesian
packages (JAGS [Plummer, 2003], Stan [Carpenter et al., 2017])
to generalize the approach to a broad range of likelihood
functions (e.g., Poisson, gamma, beta, negative binomial,
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beta-Binomial) to accommodate the wide range of response
types commonly used in ecotoxicology (Szdcs & Schéfer, 2015).
This is critical given our above discussion highlighting the im-
portance of using the appropriate statistical distribution to model
the response to properly quantify uncertainty. While our example
focused on a single three-parameter sigmoidal function, there is
a wide range of possible monotonically decreasing functional
forms that can be used to model C-R data in ecotoxicology (Ritz
et al., 2015). Expanding the range of models that can be used is
very simple within the Bayesian framework using the currently
available packages in R. Indeed, this is already being achieved in
two recently developed C-R packages (Fisher et al., 2020, 2023;
https://github.com/open-AlMS/bayesnec). The Bayesian ap-
proach also has two other advantages in C-R modeling, pre-
viously noted by Krull (2020): (1) direct inclusion of uncertainty in
the estimates, which can be drawn directly from the posterior
distribution, and (2) the fact that prior information can be ad-
justed by using expert elicitation, information from the literature,
or previous experiments. Even when weakly informative priors
are used, their inclusion in the model-fitting process can con-
tribute to the accuracy of the method and improve the stability of
model fitting (Krull, 2020).

CONCLUSIONS

The NSEC provides an alternative to the NEC toxicity esti-
mate for data that do not exhibit threshold effects, which can
be calculated using both frequentist and Bayesian approaches.
The NSEC is conceptually similar to the traditional NOEC but
superior in two key ways: (1) it decouples the estimate from
being directly dependent on the placement of treatment con-
centrations by using model-based extrapolation, and (2) it
provides the additional advantage of yielding a confidence
bound around the resulting toxicity estimate.
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