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Abstract
A range of new statistical approaches is being developed and/or adopted in ecotoxicology that, when combined, can

greatly improve the estimation of no‐effect toxicity values from concentration–response (CR) experimental data. In particular,
we compare the existing no‐effect‐concentration (NEC) threshold‐based toxicity metric with an alternative no‐significant‐
effect‐concentration (NSEC) metric suitable for when CR data do not show evidence of a threshold effect. Using a model‐
averaging approach, these metrics can be combined to yield estimates of N(S)EC and of their uncertainty within a single
analysis framework. The outcome is a framework for CR analysis that is robust to uncertainty in the model formulation, and for
which resulting estimates can be confidently integrated into risk assessment frameworks, such as the species sensitivity
distribution (SSD). Integr Environ Assess Manag 2024;20:279–293. © 2023 Commonwealth of Australia and The Authors.
Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of
Environmental Toxicology & Chemistry (SETAC).
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INTRODUCTION
The primary concern of most environmental regulatory

risk assessments is whether there is a level of toxicity that
poses a risk to the survival of a population. Generally, in a
protective‐risk management framework, the goal is to de-
termine the concentration at which there can be considered
no adverse effects on the ecosystem. For this reason, esti-
mation of no‐effect concentrations (NECs) for substances of
concern is integral to both risk assessment regulation and
for the establishment of environmental quality standards (de
Bruijn & Hof, 1997). In several jurisdictions the species
sensitivity distribution (SSD; Posthuma et al., 2001) is used
to extrapolate, from individual estimates of safe concen-
trations for a range of species, the percentage of the com-
munity that is protected at concentration “x” (PCx), or
hazardous concentrations (HCx) for 100−x% of all species,

that are applied in most current formal water quality
guideline value (GV) derivations (Fox et al., 2021). The data
underpinning the SSD are the toxicity estimates extracted
from individual species concentration–response (CR) ex-
perimental data. Ideally, if the goal is high confidence in the
level of protection achieved, the input toxicity data should
represent the maximum concentration of no “effect” for each
species.
There is a wide range of statistical metrics that have been

adopted to estimate no‐effect toxicity values for use in
SSDs (Table 1), and for pragmatic reasons, a range of
metrics is generally allowed within most regulatory frame-
works. These include the no‐observed‐effect‐concentration
(NOEC), effect‐concentration of a defined percentage x
(typically 10%, EC10, LC10), and the no‐effect‐concentration
(NEC; Table 1). There is considerable debate in the liter-
ature regarding the validity and value of different ap-
proaches (Fox, 2008, 2012; Fox & Landis, 2016a, 2016b;
Green et al., 2013; Warne & Van Dam, 2008). All three
methods are used in practice with each having strengths
and weaknesses across the myriad situations that arise in CR
modeling. The current Australian guidelines state that: “…
the preferred order of statistical estimates of chronic toxicity
to calculate default and site‐specific GVs is: chronic NEC,
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EC/IC/LCx where x≤ 10, BEC10, EC/IC/LC15–20, and
NOEC. Although all of these acceptable statistical estimates
of toxicity are not numerically the same, they are all
treated as equivalent for the purposes of deriving GVs ….”
However, for SSDs developed for the purpose of estimating
protective guideline concentrations, the recommendation
that “effect” concentrations are allowable in an SSD could
be considered problematic because, by definition, such
toxicity measures represent an “effect” of the specified
amount, and the resulting SSD cannot be assumed to be
protective (Fisher & Fox, 2023). Therefore, an NEC is the
preferred toxicity metric for SSD modeling in Australia
(Warne et al., 2018).
The NEC is typically estimated using a threshold model

(Fox, 2008, 2010; Pires et al., 2002) and represents the
maximum concentration for which there is no response for a
given species, thereby providing a toxicity measure that is
ideal for incorporation into SSDs aimed at estimating pro-
tective concentrations of contaminants. Although the NEC is
considered the preferred measure for inclusion into SSDs in
at least some jurisdictions (Warne et al., 2018), CR data do
not necessarily exhibit abrupt threshold‐like responses, and
applying a threshold model in this case will lead to poor
outcomes (Krull, 2020). This phenomenon has occurred in
our own work, where at times attempts to fit a threshold
model have failed using standard packages such as drc in
R (Ritz et al., 2015) or, when it does fit successfully, may yield
values that are higher than even the EC10 (Negri
et al., 2021). In this case, a threshold model of response is
clearly not appropriate, and the NEC will not be a suitable
estimate of “no‐effect”.
More recently, Fisher and Fox (2023) introduced the no‐

significant‐effect concentration (NSEC) as an alternative to
the NEC when a threshold is either untenable or not in-
dicated by the data. Initially proposed by Bellio et al. (2000)
and further developed by Chèvre et al. (2002), full details of
the method are provided in Fisher and Fox (2023) and are

not repeated here. Briefly, the technique involves fitting a
nonlinear model to the CR data and evaluating the con-
centration above which the difference between the mean
response at the control and that concentration is statistically
significant, based on the estimated variability and a pre-
defined level of statistical significance. The NSEC represents
an improvement over the conceptually linked NOEC often
used in ecotoxicology by decoupling the estimate from the
treatment concentrations specifically used in a given ex-
periment and allowing an estimate of precision (Fisher &
Fox, 2023). Although Fisher and Fox (2023) provide a thor-
ough description of the mathematical derivation of the fre-
quentist version of the NSEC, as well as implementation
of the Bayesian equivalent, the concept has yet to be
evaluated more extensively using simulated and case
study data.

In addition to the range of toxicity estimates that are used
in SSD modeling, there is an even wider range of possible CR
models that may be used to derive them. For example, the
popular frequentist CR modeling R package drc
(Ritz et al., 2015) contains 23 nonlinear functions that can
be used, as does our recently developed Bayesian CR
modeling package bayesnec (Fisher et al., 2021). These in-
clude multiple threshold models as well as a wide array of
models representing a smooth decline with increasing tox-
icant concentration. Although there may be underlying
physiological and toxicological mechanisms suggesting a
threshold model is appropriate in some cases (Chapman &
Wang, 2000), this is not always known, and clear thresholds
may not always be apparent in the observed response rela-
tionship due to complex physiological responses and variable
individual tolerances resulting in a wide tolerance distribution
across a population (Van Straalen, 1997). Without a theoret-
ical basis for model selection, it becomes difficult to de-
termine a priori the best model to use for a given set of data.
Given the many possible curves that may be used to describe
the data, model uncertainty can be high and model selection

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The Authorswileyonlinelibrary.com/journal/ieam

TABLE 1 Toxicity estimates currently used for estimating no and low‐effects for using in SSD modeling

Toxicity estimate Definition Statistical method

NSEC No significant effect concentration—the concentration at which
the modeled mean response is statistically indistinguishable
from the mean control response

Interpolation from a CR model (Fisher
& Fox, 2023)

NEC No effect concentration—the minimum concentration above
which an effect is predicted to occur

Parameter estimate of a CR threshold
model (Fox, 2010; Pires et al., 2002;
Van Der Hoeven, 1997)

NOEC No observable effect concentration—the highest tested
concentration at which the mean response is statistically
indistinguishable from the mean control response

Dunnett's test (based on ANOVA)

ECx/ICx/LCx x% effect/inhibition/lethal concentration—the concentration that
is expected to cause a specified effect in x% of a group of
organisms or x% effect (ECx); an x% reduction in a nonquantal
measurement such as fecundity or growth (ICx); or be lethal to
x% of a group of organisms (LCx)

Interpolation from a CR model

Note: Definitions are adapted from Warne et al. (2015), with the exception of NSEC, which is described in Fisher and Fox (2023). Abbreviations: CR,
concentration‐response; SSD, species sensitivity distribution.
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ambiguous when many of these appear to fit the data equally
well. Model averaging (Burnham & Anderson, 2002) repre-
sents an approach that can provide a robust way of accom-
modating model uncertainty. Model averaging involves
fitting a candidate set of plausible models to the data and
obtaining weighted averaged estimates of the metrics of in-
terest (Burnham & Anderson, 2002). Weights are based on
the relative fit of each model to the data. Model averaging is
currently being considered as a potentially more robust
framework for SSD modeling (Fox et al., 2021) and is widely
used in ecology (Dormann et al., 2018).
Here, we explore estimation of no‐effect toxicity values

using the recently introduced NSEC toxicity measure (Fisher
& Fox, 2023) in combination with NEC, within a model‐
averaging framework. We begin with a simplified simulation
study including only two alternative models, an NEC‐
threshold model and a simple sigmoidal decay function. We
then present a case study using real data revealing how the
NSEC and NEC values, when combined using model aver-
aging, can yield no‐effect toxicity estimates along with esti-
mates of their uncertainty within a single analysis framework.

SIMULATION STUDY
We constructed a simulation study to compare toxicity

estimates obtained using NEC, ECx, and the NSEC, across a
range of experimental designs with differing replications.
Simulations were based on four alternative scenarios rep-
resenting four different theoretical concentration–response
relationships of a binary response endpoint. For all sce-
narios, we assume a data structure in the following form:
{yi= number of “successful” outcomes out of ni replications
of an experiment at concentration xi}. Our response yi is
modeled using a binomial distribution, with expected value
μi given the number of binomial “trials” ni:

μ~ ( )y bin n, ,i i i

where for the first two scenarios the expected value μi was
predicted using the three‐parameter NEC exponential
decay threshold model of Fox (2010), with the parameters α
(top, y intercept), β (exponential decay rate), and γ (the NEC
threshold, see Equation 1).

μ α β γ α β γ γ α β γ( ) = [− ( − ) ( )] { } >x x I x; , , exp ; ; , , 0,i i i

and the indicator function γ( )I x ;i :

⎧
⎨⎩

γ
γ

( ) =
>I x if x; 1

0 otherwise
(1)

The second two scenarios were based on a three‐
parameter sigmoidal decay model representing a smooth
decline with concentration (see Equation 2). This includes
the same parameters α (top, y intercept), β (exponential
decay rate), and an additional parameter δ influencing shape
of the decay function.

⎡⎣ ⎤⎦
μ α β δ α β α β δ( ) = − { } >δx x; , , exp , , 0.i i (2)

These models were used to generate predicted data for a
given concentration (x), using the two R functions given in
the Supporting Information.
Parameters were selected for α, β, γ, and δ (Table 2) to yield

the four curves shown in Figure 1A. Simulated datasets were
generated randomly using these four curves based on a bi-
nomial distribution to represent a hypothetical binary end-
point (e.g., survival) with a mean value of 90% success for the
control (α‐top,). This was achieved by generating theoretical
predicted probabilities for two theoretical experimental
treatment sequences with either eight (low‐density design) or
12 (high‐density design) treatment concentration values dis-
tributed evenly from 0.01 to a maximum hypothetical value of
10 concentration units. We applied the base R function
rbinom() to randomly simulate binomial response data at
each treatment level for the predicted probability, with
varying levels of n (five or 10 replicates) and size (10 or 20
binomial trials, representing the number of individual test
organisms within each replicate). The number of trials used
was based loosely on our experience with some of the
commercial accredited ecotoxicological tests offered in
Australia, such as the Saccostrea echinata (100 individuals/
replicate, https://www.ecotox.com.au/wp-content/uploads/
2018/11/Testfactsheet7.pdf) and the Echinometra mathaei
(WIECX‐25‐Sea Urchin Larval, Test ID: 69669, 200 individuals/
replicate) larval development tests. The combination of ex-
perimental conditions resulted in eight different sets of si-
mulated data for each of the scenarios examined, and
representative examples are shown for each scenario in
Figure 1B. This simulation process was repeated 100 times
for each design, for all four model scenarios.
We used the R package jagsNEC https://github.com/open-

AIMS/NEC-estimation (Fisher et al., 2020) to fit both the
three‐parameter NEC and sigmoidal models to the randomly
simulated data. Both models were fit in a single call to
fit.jagsMANEC, with model.set set at c(“NEC3param”,

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The AuthorsDOI: 10.1002/ieam.4809

TABLE 2 Scenario parameters used in simulations.

Scenarios α β γ δ (days) N treatments

Sigmoidal 1 0.9 5.0e−03 ‐ 3.5 8

Sigmoidal 1 0.9 5.0e−03 ‐ 3.5 12

NEC 1 0.9 7.5e−01 2.5 ‐ 8

NEC 1 0.9 7.5e−01 2.5 ‐ 12

Sigmoidal 2 0.9 1.0e−08 ‐ 9.0 8

Sigmoidal 2 0.9 1.0e−08 ‐ 9.0 12

NEC 2 0.9 7.5e−01 6.0 ‐ 8

NEC 2 0.9 7.5e−01 6.0 ‐ 12

Note: NEC scenarios are based on the no‐effect‐concentration (NEC)
threshold in equation 1. Sigmoidal scenarios are based on the smooth model
in Equation 2.

ESTIMATING NO‐EFFECT TOXICITY—Integr Environ Assess Manag 20, 2024 281
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“ECxsigmoidal”), which represent the two original model
types used to generate the two NEC and sigmoidal scenarios
(see Equations 1 and 2). Posterior estimates for the NEC were
obtained directly from the NEC model fit for each simulated
dataset as the estimated γ parameter. Posterior estimates for
NSEC were obtained with the function extract_NSEC (Fisher
et al., 2020), which implements the Bayesian method for es-
timating NSECs, as described in Fisher and Fox (2023), and
for the simulation study was based solely on the estimates
obtained from the smooth sigmoidal curve. In addition to the
NEC and NSEC estimated from their respective threshold

and sigmoidal models, a model‐averaging approach is used
to provide a combined estimate. This model‐averaging
strategy uses an information theoretic approach (Burnham
& Anderson, 2002), and weights the average of the NEC and
NSEC based on the relative support of each model given the
data, providing a combined estimate of no‐effect, which we
denote as the N(S)EC. Within this framework, if the NEC
model(s) fits the data better, these will have high weight, and
the resulting estimate will be a true NEC estimate. Con-
versely, if the sigmoidal model(s) fit better, the resulting
toxicity estimate will be based largely on an NSEC estimate.

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 1 The four concentration‐response (CR) curves generated for the simulation study, including two no‐effect‐concentration (NEC) and two sigmoidal
curves (based on Equations 1 and 2, respectively). (A) Theoretical curves for all four scenarios. For all scenarios the y‐intercept parameter (mean value of the
response for the control) was set at 0.9, and for the two NEC models, we used the same exponential decay rate of 0.75. The dashed dark red line indicates the
theoretical EC10, and the downward blue arrows the position of the NEC for each of the NEC scenarios. Note that there is no theoretical NEC for smooth
sigmoidal curves. Colored tick marks along the concentration (x) axis show the placement of the simulated treatment locations for the eight (green) and 12
treatment (dark blue) designs. (B) Plotted realizations for each scenario for all four scenarios, showing an example dataset for a design with eight treatments
(dark blue circles) and a design with 12 treatments (green circles). The upper row shows data simulated using the least replicated design (five replicates with 10
trials each), and the lower row shows data for the most replicated design (10 replicates with 20 trials each).

282 Integr Environ Assess Manag 20, 2024—FISHER ET AL.
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We also similarly obtained model averaged posterior esti-
mates of EC10, EC5, and EC1 using the function extract_ECx
(Fisher et al., 2020).

Comparing model weights

The jagsNEC package uses deviance information criterion
(deviation information criterion [DIC]; Spiegelhalter et al.,
2002) based model weights to generate model averaged
estimates of the toxicity estimates (e.g., EC10 and NSEC). To
compare N(S)EC estimates across the different scenarios, we
first wanted to establish if the model weighting procedure
works effectively in these examples.

We found that the underlying generating model usually
had the highest weight for most simulated datasets
(Figure 2). There were some exceptions, with a few simu-
lations resulting in high weight for the model not used to
generate the data, particularly for low sampling and treat-
ment density (Figure 2A).
There was a tendency for the data generated from the

second sigmoidal scenario to yield a higher weight for the
NEC model, particularly when there are few treatments
(Sigmoidal 2; Figure 2). This tendency persists, even with
quite high replication within treatments. There was also a
tendency for data generated using the first NEC scenario to

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The AuthorsDOI: 10.1002/ieam.4809

FIGURE 2 Deviation information criterion (DIC)‐based model weight for the underlying data generating model (Equation 1 or 2) relative to the alternative
model when fitted using jagsNEC (Fisher et al., 2020) to data simulated according to four theoretical curves, including two no‐effect‐concentration (NEC)
threshold models (NEC 1 and NEC 2, Equation 1) and two sigmoidal models (Sigmoidal 1 and Sigmoidal 2, Equation 2; see Table 2 for details). Simulations
were run for a range of sampling designs, including eight or 12 treatment levels, five or 10 replicates within each treatment, and 10 or 20 binomial trials
(individual survival estimates). The upper plots (A) show boxplots based on all simulation outcomes, whereas the lower plots (B) show the median weight across
simulations as a function of the total number of replicates

ESTIMATING NO‐EFFECT TOXICITY—Integr Environ Assess Manag 20, 2024 283
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have a high weight for the sigmoidal model when sampling
density is lower, with this occurring more frequently when
there were few treatments (NEC 1; Figure 2).
Increasing the number of treatments had a more pro-

found effect on improving the relative weights of the two
competing models than increasing the number of trials or
replicates within each treatment (Figure 2B). For example,
the weight for the NEC model for the NEC 1 scenario was
0.987 for the design with the fewest replicates (five repli-
cates each with 10 trials) and 12 treatments (600 trials;
Figure 2B, Supporting Information: Table S1), which is sim-
ilar to a design with eight treatments and double the level
of within‐treatment replication (five replicates each with
20 trials, 800 trials, weight= 0.984; Figure 2, Supporting
Information: Table S1). For the Sigmoidal 2 scenario, this

effect was even more pronounced, with median weights
better for the design with 12 treatments across all levels of
replication compared with eight treatments (Figure 2).

Comparing toxicity estimates

We examined the NSEC, NEC, and N(S)EC values esti-
mated using jagsNEC (Fisher et al., 2020) for all the simulation
scenarios examined, along with EC1, EC5, and EC10, to see
how these compared with each other (Figure 3, Supporting
Information: Table S2). The model averaged estimated
N(S)EC values are close to the true NEC estimates for data
simulated using an NEC‐type model, although the NSEC es-
timates are considerably lower than the NEC (NEC 1 and
NEC 2; Figure 3A). The close agreement between NEC and
N(S)EC reflects the high weight that the NEC model has for

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 3 Toxicity estimates (A) and their coefficient of variability (B) from data simulated according to four theoretical curves, including two no‐effect‐
concentration (NEC) threshold models (NEC 1 and NEC 2, Equation 1) and two sigmoidal models (Sigmoidal 1 and Sigmoidal 2, Equation 2; see Table 2 for
details). Simulations were run for a range of sampling designs, including eight or 12 treatment levels, five or 10 replicates within each treatment, and 10 or 20
binomial trials (individual survival estimates). All values were estimated using jagsNEC (Fisher et al., 2020). The estimated no‐significant‐effect‐concentration
(NSEC) value is based on a 99% certainty level, and N(S)EC and all ECx estimates are a deviation information criterion (DIC) weighted average of Markov chain
Monte Carlo (MCMC)‐based model fits for both the NEC‐threshold (Equation 1) and the sigmoidal (Equation 2) models. No‐effect‐concentration values are
estimated based only on the NEC model fit, and NSEC is based on the sigmoidal model fit. Also shown are the true toxicity estimates for each scenario (colored
horizontal lines). For the NEC scenarios, this is the true theoretical NEC used in simulations. For the sigmoidal scenarios, there is no theoretical NEC, and
theoretical EC1, EC5, and EC10 are shown instead. The coefficient of variability is calculated according to the method of Lovitt and Holtzclaw and provides a
robust measure of coefficient of variation (Arachchige et al., 2022)

284 Integr Environ Assess Manag 20, 2024—FISHER ET AL.
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the simulated data generated from an underlying NEC model
and the NEC model's greater overall contribution to the
combined N(S)EC estimate.
Model averaged estimated N(S)EC values are similar to the

NSEC estimates for data simulated using a sigmoidal model
and, for both sigmoidal scenarios, the NSEC estimates are
considerably lower than an NEC estimated from these data
(Sigmoidal 1 and Sigmoidal 2; Figure 3A). For sigmoidal
models, there is no true theoretical NEC, and we can only
compare with true ECx estimates. For the sigmoidal scenarios,
the estimated N(S)EC and NSEC values fall across the range
of EC1 to EC10 (Sigmoidal 1 and Sigmoidal 2; Figure 3A).
When NEC is estimated by fitting the NEC‐threshold

model to data generated using the two sigmoidal models
(Sigmoidal 1 and Sigmoidal 2), estimated values are quite
high relative to even the EC10 estimate, with most estimates
higher than the true EC10 value (Figure 3). The estimated
N(S)EC and NSEC values are always lower than the esti-
mated NEC value for these sigmoidal models (Figure 3).

Estimates of all toxicity values (including NEC, NSEC, and
ECx) are more variable with lower sampling effort across all
four scenarios (Figure 3B). Estimates of NSEC as well as ECx
exhibit greater variability with low sampling effort and, for
some scenarios, variability is further reduced for a design
with 12 compared with eight treatments for a similar sam-
pling effort (the blue line is often lower than the green line;
Figure 3B).

Actual effects of estimated toxicity

For our simulation study, the knowledge of the underlying
response‐generating model allows estimation of the actual
effect size for the model averaged N(S)EC, NSEC, and NEC
estimates, as well as the estimated EC1, EC5, and EC10
values (Figure 4, Supporting Information: Table S2).
For datasets generated using the two NEC models, esti-

mates of NEC, NSEC, and the combined N(S)EC were all
close to the theoretical expectation of 0% effect, with a mean
difference from expected usually at zero, even for designs

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The AuthorsDOI: 10.1002/ieam.4809

FIGURE 4 Actual estimated effects of a range of toxicity estimates (A) and their mean difference from expected (B) estimated from data simulated according to
four theoretical curves, including two no‐effect‐concentration (NEC) threshold models (NEC 1 and NEC 2, Equation 1) and two sigmoidal models (Sigmoidal 1
and Sigmoidal 2, Equation 2; see Table 2 for details). Simulations were run for a range of sampling designs, including eight or 12 treatment levels, five or 10
replicates within each treatment, and 10 or 20 binomial trials (individual survival estimates). All values were estimated using jagsNEC (Fisher et al., 2020), as
described in Figure 3. Colored lines show the true EC1, EC5, and EC10 effects. For the NEC, no‐significant‐effect‐concentration (NSEC), and N(S)EC, the
theoretically expected values are 0

ESTIMATING NO‐EFFECT TOXICITY—Integr Environ Assess Manag 20, 2024 285
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with relatively low sampling effort (Figure 4B). The exception
is the NEC estimate for the second NEC scenario for the
design with the least sampling effort, although even then the
mean estimated effect is still only approximately 3%
(Figure 4B). This reflects the relative robustness of the NEC as
a measure of no‐effect toxicity for data that have a distinct
threshold effect. This robustness appears to be retained when
the NEC is combined with the NSEC in a model‐averaging
framework to estimate an N(S)EC. The ECx estimates derived
from models fitted to datasets generated using the two NEC‐
threshold models tended to be lower than expected, partic-
ularly for designs with low sampling effort (Figure 4B). There
was a somewhat complex pattern for both EC05 and EC10
estimates with the sampling design for the second NEC sce-
nario, possibly due to the position of the treatment concen-
trations relative to the theoretical position of the NEC
(Figure 4B).
For data simulated using the two sigmoidal models, the

actual effect sizes of all toxicity estimates varied substantially
across simulations, and all were influenced by sampling den-
sity (Figure 4). The NEC values estimated from data generat-
ed using sigmoidal models represented relatively high actual
effect sizes (15%–40% depending on the design) and did not
necessarily improve with greater sampling effort (Figure 4B).
There was substantial variability in the actual effect size of

the estimated NSEC and N(S)EC values (Figure 4A). Estimates
for the NSEC and N(S)EC represented effects nearing 10% on
average for designs with the poorest sampling effort, but the
calculated effects decreased substantially with increasing
sampling effort, representing an effect of approximately 1%
on average for the most replicated design in our simulations
(Figure 4B). Like the NSEC, there was also substantial varia-
bility in the actual effect size of the estimated ECx values, with
ECx estimates tending to be greater than the theoretical value
when the sampling effort is low, particularly for data based on
the second sigmoidal scenario (Figure 4B). As sampling effort
increases, this bias gradually decreases, and mean estimates
correspond to their true value for the designs with the
greatest sampling effort (Figure 4B). For the second sigmoidal
scenario in particular, increasing the number of treatment
concentrations reduces bias in estimates more quickly for a
given sampling effort (Figure 4B).

CASE STUDIES

Case Study 1

In our first case study, we demonstrate how the “no‐effect”
copper toxicity to the Antarctic marine microalgae Cry-
othecomonas armigera can be simply estimated using model
averaging across a range of NEC thresholds and smooth
sigmoidal curves. The data for this case study are from
doi:10.4225/15/5746938EC8C8B (with the derived dataset
available for download at https://github.com/open-AIMS/
NSEC_IEAM/blob/main/case_study1_data.xlsx) and describe
the decreasing microalgal population growth rate (normal-
ized as a percentage of controls) after increasing exposure to
dissolved copper (Koppel et al., 2017). As the growth‐rate

data were collated across several separate concentration
experiments to ensure alignment, they were normalized to
the maximum growth observed within each experiment.
Graphical inspection of the data suggested that there was a
natural upper bound to the growth rate. To accommodate a
response variable with fixed lower (0 growth) and upper
(maximum growth) bounds, we used a reparameterization of
the Beta distribution (Equation 3) in the likelihood function,
after normalization relative to the maximum. The likelihood
function for the mean response (μ) is estimated as a function
of the two shape parameters of the Beta distribution, using
the latent parameter ϕ:

~ ( )y Beta shape1, shape2 ,i i i

μ ϕ=shape1 ,i i

μ ϕ= ( − )shape2 1 .i i (3)

Models were fit using the same jagsNEC package (Fisher
et al., 2020) as used in the simulation study. This package
uses a model‐averaging approach based on DIC weighted
averaged predictions across a potential candidate model set
composed of a range of functional NEC models adapted
from Fox (2010), including two NEC models (NEC3param,
NEC4param) and a range of commonly used sigmoidal
models (ECx models: ECxLinear, ECx4param, ECxExp,
ECxSigmoidal, ECxWeibull1, and ECxWeibull2; see Fisher
et al. [2020] and the Supporting Information for more details
on the included models, including model formula). We used
the default settings in the function fit.jagsMANEC, with
5000 iterations as burn in, 10 000 update iterations, and
three chains. Chain mixing was always assessed visually and,
where models exhibited poor mixing, they were excluded
from model averaged estimates of toxicity estimates.

The DIC‐based model weights for the resulting CR curves
were spread relatively evenly across three smooth models,
ECx4param, ECxsigmoidal, and ECxWeibull2 (Table 3;

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The Authorswileyonlinelibrary.com/journal/ieam

TABLE 3 Successfully fitted models and their associated deviation
information criteria (DIC) and DIC‐based model weights for the
concentration–response relationships of the effects of copper on

the Antarctic microalga Cryothecomonas armigera

Model DIC ωii

NEC3param −174.311 0.001

NEC4param −170.562 0

ECxLinear −181.141 0.034

ECxExp −127.252 0

ECxsigmoidal −185.696 0.334

ECx4param −185.943 0.377

ECxWeibull1 −183.271 0.099

ECxWeibull2 −184.154 0.154

Note: See the Supporting Information for details of model formulations for
each model.
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Figure 5). The NSEC estimates for these models were all
comparable at 6 (1–11), 7 (3–11), and 6 (1–11) µg L−1

(Figure 5). We denote the model averaged “no‐effect”
concentration as the N(S)EC, to indicate it is a weighted
average of both NEC and NSEC values. The NEC models
had an averaged NEC of 4.6 (3.9–4.9) µg L−1 (Table 4) but
low weights (0–0.001; Table 3), so the resulting N(S)EC
of 7 (1–11) µg L−1 reflects the weight of the smooth models
(Figure 5). Although the N(S)EC value is lower than the NEC,
NOEC, or the EC10 (Table 4), the values are slightly higher
than the EC1 estimate (Table 4). The estimated “effect” of
the N(S)EC value is approximately 2.3% (Table 4).

Case Study 2

In our second case study, we use data from our recent
publication (Negri et al., 2021) that was also originally

analyzed using the jagsNEC package (Fisher et al., 2020).
These data examined the responses of eight tropical marine
species to the water accommodated fraction of gas con-
densate (light crude oil) from the Ichthys and Prelude gas
fields off the tropical northwest coast of Australia. The main
aim of the original study was to build an SSD following the
standard guideline methods (Warne et al., 2015, 2018) to
validate mixture toxicity modeling for petroleum hydro-
carbons. In their original analysis, either the EC10 or the
NEC was used for input to the SSD (whichever was more
conservative), as both of these are considered valid toxicity
estimates for the purpose of developing SSDs (Warne
et al., 2018). Here, we revisit the analysis of the underlying
CR curves and use these to explore issues with fitting NEC
models to real data, as well as how the N(S)EC toxicity es-
timate performs in practice. The original data considered

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The AuthorsDOI: 10.1002/ieam.4809

FIGURE 5 Concentration–response relationships for the effects of copper on the Antarctic microalga Cryothecomonas armigera (Koppel et al., 2017). The
model average (A) and contributing individual models (only those with weights >0.1, B–D) are shown. The vertical black line indicates the no‐significant‐effect‐
concentration (NSEC) estimated from each model (B–D), and the vertical purple line indicates the model averaged “no‐effect” concentration (A), denoted as the
N(S)EC to indicate it is a weighted average of both NEC and NSEC values
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eight species. However, three of these did not display a
complete response at the highest concentration examined
(Acropora muricata, Phyllospongia foliascens, and Rhodo-
monas salina), and a fourth exhibited evidence of hormesis
(Cladocopium goreaui; Negri et al., 2021). For simplicity,
these four species were excluded here, leaving the
remaining four species—Acropora millepora (coral),
Stomopneustes variolaris (sea urchin), Nassarius dorsatus
(gastropod), and Amphibalanus amphitrite (barnacle)—to be
used in our case study assessment.

Substantial details regarding the collection of these data
including the experimental conditions and a description of
each assay are described in the original study (Negri
et al., 2021) and the supplementary files https://ars.els-cdn.
com/content/image/1-s2.0-S0025326X21009334-mmc1.pdf.
Response data for assays based on a decline in the per-
centage of larvae successfully completing metamorphosis
(A. millepora and A. amphitrite) or fertilization success
(S. variolaris) were initially fit using a binomial likelihood
function. However, these initial models were always over-
dispersed. Instead, these were converted to a proportion
and the data fit using a Beta likelihood function, which al-
lows for a more flexible relationship between the mean and
the variance relative to the binomial distribution. Response
data for assays based on a specific growth rate were nor-
malized if values exceeded one (N. dorsatus)—by dividing
by the maximum observed value (to reflect proportional
decline) and then also modeled using a Beta distribution, as
these were similarly upper bounded as overserved for Case
Study 1. Concentration data were included in all models on
a log scale, because this was the natural scaling evident in
the placement of treatments across the concentration range
considered. All models were fit using the R package
jagsNEC (Fisher et al., 2020). Chain mixing was always as-
sessed visually and, where models exhibited poor mixing,
they were excluded from model averaged estimates of
toxicity estimates. As for Case Study 1, only models with
NEC as a specific parameter were used to obtain a DIC
weighted model averaged estimate of NEC (i.e., both
models with the prefix NEC). Estimates of 1% and 10% ef-
fect (EC10) and N(S)EC were calculated using DIC weighted
model averaged estimates obtained from all successfully
fitted models (both models with a prefix NEC and models
with the prefix ECx; see Fisher et al., 2020), although in the
latter case N(S)EC is a weighted averaged of the NEC and
NSEC estimates of the underlying models.

The highest weighting model varied across the four spe-
cies examined (Figure 6). For A. amphitrite, there was strong
weight for a single model—which was the original NEC
three‐parameter model (Fox, 2010; Figure 6). For this spe-
cies, the model average based on “all” models was essen-
tially identical to the NEC model set, and the estimated
values for the NEC, EC10, and N(S)EC were all nearly
identical (with NEC marginally lower than the other two
estimates), although the confidence bands for the NEC were
substantially narrower than for the other two toxicity esti-
mates (Figure 6; Table 4). For the other three species, there
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was substantial support for more than one model, and this
generally included support for one of the “NEC” model
types, as well as a smooth “ECx” model type (see Figure 6).
For N. dorsatus, the EC10 estimate is nearly identical to the
estimated NEC (blue vertical line overlaps the red vertical
line), with the estimated N(S)EC only slightly less, with
overlapping confidence intervals (Figure 6; Table 4).
Acropora millepora also had similar estimates for the
N(S)EC, EC10, and NEC, which all have overlapping con-
fidence intervals, although the N(S)EC was the most con-
servative and NEC the least conservative for this species
(Figure 6; Table 4). For S. variolaris, the NEC estimate was
definitively higher than the estimated EC10, and the N(S)EC

estimate was lower than both the NEC or EC10 (Figure 6;
Table 4). As the N(S)EC estimate was quite low for S. vari-
olaris and in order provide context, we calculated the NOEC
value also using a Beta distribution, fitting the concentration
data as a treatment factor via the package glmmTMB
(Brooks et al., 2017) and doing a Dunnett's test via glht from
the package multcomp (Hothorn et al., 2008). We found that
the NOEC value was 31.8 µg L−1, which is far more con-
servative than our estimated N(S)EC (140 µg L−1; Table 4),
providing further support that an EC10 estimate for these
data would be highly nonconservative, representing a po-
tentially environmentally significant effect. This also dem-
onstrates that, although the estimated N(S)EC is quite low

Integr Environ Assess Manag 2024:279–293 © 2023 Commonwealth of Australia and The AuthorsDOI: 10.1002/ieam.4809

FIGURE 6 Concentration–response relationships for the effects of 40% weathered condensate water accommodated fraction (WAF) on four tropical marine species.
Measured time‐weighted average concentrations are expressed as total aromatic hydrocarbons (TAH) on a log scale. Curves are model averaged Bayesian nonlinear
Beta model fits with 95% credible intervals indicated by the shaded ribbon where all models are included “All” or only no‐effect‐concentration (NEC) models are
included “NEC.” Binomial response data are the proportion of successes (Acropora millepora, and Stomopneustes variolaris; B, D); growth‐rate response data taking
values greater than 1 are normalized relative to the maximum value (Nassarius dorsatus; C); and growth‐rate response data taking values less than 1 are modeled on
the original scale (Amphibalanus amphitrite; A). The vertical lines indicate the estimated NEC, EC10, and model averaged “no‐effect” N(S)EC values, respectively.
The model averaged “no‐effect” is denoted as the N(S)EC to indicate it is a weighted average of both NEC and no‐significant‐effect‐concentration (NSEC) values.
Note the individual NEC, EC10, and N(S)EC values are similar and therefore difficult to distinguish for (A)–(C)
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and may appear to some overly conservative, it is less
conservative than a calculated NOEC based on the same
data. The estimated “effect” of the N(S)EC value for this
species is approximately 1.5% (Table 4).

DISCUSSION
The estimation of no‐effect toxicity values is critical to

deriving safe concentrations of thresholds in the environ-
ment. Threshold‐based models for estimating toxicity esti-
mates of no‐effect are ideal because they directly estimate
the NEC as a parameter in the model. However, some CR
data exhibit no threshold effect but instead exhibit a gradual
decline with concentration rendering an NEC model in-
appropriate (Fisher & Fox, 2023). Indeed, for both our sim-
ulation and the case study examples, when the three‐
parameter NEC model of Fox (2010) is fit to smooth sig-
moidal data, the resulting estimates of NEC are often higher
than even the EC10, with simulations suggesting true effects
as high as 30%. This occurs because the three‐parameter
NEC model fit is unable to capture the gradual decline in-
herent in smoothly sigmoidal data and reinforces the case
that fitting threshold models to smoothly sigmoidal data is
clearly not appropriate (Fisher & Fox, 2023). In the original
analysis of the second case study data, the authors adopted
the conservative approach of selecting the lower value of
either the NEC or EC10 (estimated using models properly
capturing the smooth decline) for inclusion in the final SSD
(Negri et al., 2021). This decision is consistent with the
current Australian guidelines that aim to derive concen-
trations that are unambiguously protective of the whole
community (Warne et al., 2018). Certainly, using the NEC in
this case would result in the derivation of thresholds that are
unlikely to be as protective of the community as intended.
The fact that NEC models provide a poor fit to smoothly

sigmoidal data resulting in NEC estimates higher in some
cases than the EC10 is to be expected, because the NEC
three‐parameter model fitted here was not used to generate
the underlying sigmoidal simulation data. However, the
general lack of alternative NEC threshold models means
that this is exactly how the NEC would be estimated from
these data in practice. We attempted to resolve this issue
when it arose in the original analysis of Case Study 2 data by
including an additional model that expanded the original
three‐parameter model of Fox (2010) to allow a sigmoidal
decline in the response in the development of jagsNEC
(Fisher et al., 2020). However, applying this model to real
data often resulted in highly unresolved NEC estimates with
extremely wide confidence bands (see Supporting In-
formation: Figure S1). There may be value in further devel-
oping the NEC modeling framework to allow for sigmoidal
declines using other threshold model parameterizations.
However, it seems likely that similar unresolved NEC esti-
mations will result from any sigmoidal model with a relatively
flat upper asymptote as the transition point (step/threshold)
will likely remain highly uncertain.
For simulated data based on the underlying NEC model,

the model averaged estimated N(S)EC values are close to

the true NEC estimates for data simulated using an
NEC‐type model, although the NSEC estimates are con-
siderably lower than the NEC. The high level of similarity
between NEC and N(S)EC reflects the high relative weight
that the NEC model has when fit to data generated from an
underlying NEC‐threshold model, which results in the NEC
model's greater overall contribution to the combined
N(S)EC estimate. Model averaging alleviates the need to
undertake separate analyses (threshold vs. nonthreshold
models), providing a method for estimating an no‐effect
toxicity value within a single analysis framework.

Our simulation study demonstrated that, for well‐designed
experiments with many treatment concentrations, the DIC
model weights we used here were usually highest for the
underlying data generating model. This suggests the DIC
weights did a reasonable job of resolving the true model, and
that the model average inference is quite robust, at least for
these simulation study data. Weights did vary more widely for
simulations with fewer treatment concentrations (eight rather
than 12), reinforcing the idea that replication within treat-
ments (a requirement of the one‐way ANOVA methods used
to generate NOECs) should be reduced in favor of increasing
the number of treatments (Fox, 2016).

The DIC weights used here are simple to extract from jags
models which provide DIC by default. These are generally
considered analogous to other information theoretic metrics
such as akaike information criteria (AIC, Spiegelhalter et al.,
2002). However, there are potentially much better weighting
strategies available for Bayesian model fits (Gelman et al.,
2014). This was one motivation for the development of the
bayesnec package (Fisher et al., 2021) based on brms
(Bürkner, 2017), for which the loo (Vehtari et al., 2020)
package provides a range of weighting options (Vehtari
et al., 2017).

Model averaging provides additional benefits to ecotox-
icologists because it avoids having to decide which model
to use when there is no overarching theoretical basis for
model selection. Perhaps more importantly, model aver-
aging eliminates the need to select only a single model for
inference. This is helpful when more than one model fits the
data well, such as in Case Study 1 where model weights
were broadly equivalent for three competing models, al-
though in this case the estimated curves (and resulting in-
ference) are similar (Figure 4). We have come across more
problematic examples when the log‐logistic and Weibull
type 1 and 2 models from drc (Ritz et al., 2015) can result in
different effects estimates, particularly at the EC10 level,
despite having similar AIC values and associated weights.
Model averaging ensures that estimated toxicity values are
robust, defensible, and usable within the relevant decision
context or regulatory framework. Note that we are not
suggesting here that model averaging should encourage
uncritical “automated” analysis—indeed careful selection of
the candidate model set, the appropriate application of
statistical methods (see below), and critical evaluation of the
model outputs will remain essential elements of the analysis
of a CR experiment.
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Within the model‐averaging framework being put forward
here, we suggest that the NSEC (as calculated from sigmoidal
models; Fisher & Fox, 2023) be combined with the NEC es-
timated from threshold models to estimate an overall no‐
effect toxicity value: the N(S)EC. We believe that the NSEC is
a more appropriate estimate of “no‐effect” than a low‐effect
ECx estimate to use within this model‐averaging framework,
because an ECx, by definition, represents some level of effect.
Because the NSEC estimate is based on a significance test
relative to the controls (Fisher & Fox, 2023), these estimates
will have some level of nonzero observed “effect” associated
with them, in the same way that the NOEC can also represent
some level of effect (see Mebane et al., 2008). Van Der Ho-
even (1997) argues that, because there is a minimum nonzero
effect size corresponding to any given NOEC, setting defined
effects “x” (of similar size to that minimum) should therefore be
acceptable. However, the difference is that the “x” in ECx is
typically arbitrarily defined with no direct link to the biological
implications of that effect. The “x” in a NOEC (or NSEC) is
defined as 0, with any deviation from 0 being regarded as
random noise. Although it is true that the probability level
considered in the estimation of NOEC is often arbitrary (and
perhaps should be more carefully considered with respect to
the specific decision context; see e.g., the probabilistic
thresholds in Fisher et al., 2018), the basic mechanism of hy-
pothesis testing at the heart of the NOEC (and NSEC) at least
provides a clear and coherent framework with which to make
decisions under uncertainty. Indeed both Van Der Hoeven
(1997) and de Bruijn and Hof (1997) point out that the se-
lection of an appropriate “x” is problematic from a policy
perspective.
Where there is sound ecological or biological justification

with which to set a meaningful “essentially no‐effect” value (x)
for an ECx, the use of ECxmay be justified in the derivation of
protective guidelines. However, there are few situations in
which it is possible to theoretically define such an “x,” and “x”
is typically set at an arbitarily small, fixed value. A fixed low
level of effect as defined by an ECx may not translate into a
meaningful biological effect. Alternatively, the fixed value of
“x” may represent a large effect. Green et al. (2013) discusses
a range of examples where statistically significant effects can
occur well below a 10% effect, and such effects are likely of
biological importance. In this case, using an EC10 may result
in highly nonconservative toxicity estimates that will not pro-
vide an adequate surrogate for a true NEC. Although the
NSEC can have an “effect” in the sense that it is estimated
based on a response value that is less than the mean level of
the response for the control (as it is a lower bound estimate of
the control), this effect is defined as nonsignificant in the
context of the variability observed under the experimental
conditions. If the “effect” allowed remains within the bounds
of the naturally occurring values in the absence of the tox-
icant, it seems reasonable to infer that such effects are unlikely
to have ecological and/or biological consequence on the
population.
It could be argued that the application of NEC and NSEC

over ECx values in constructing SSDs may have little realized

impact on resulting HC estimates. Iwasaki et al. (2015)
compared SSDs constructed using NOECs with those based
on EC10s and found that point estimates of HC5s based on
EC10s were 1.2 (range of 0.6−1.9) times higher. Invariably, it
will be necessary to accommodate a range of metrics for
assessing toxicity in SSDs, and studies like those undertaken
by Iwasaki et al. (2015) provide reassurance that, on
average, the choice of metric is potentially not critical.
However, this average outcome bias that depends on tox-
icity metrics can have ramifications for individual cases in
environmental regulation. For example, when HCx values
from SSDs are used to manage wastewater discharges, with
permits awarded based on the assumption that the dis-
charge is “safe” by a certain number of dilutions required to
achieve the HCx. Although a bias of 1.2 may seem small, in a
permitting situation if you require 1200 instead of 1000 di-
lutions, the permit conditions are now being exceeded. If
we apply the maximum bias of 1.9 overserved across the
studies examined by Iwasaki et al. (2015), the conditions are
now being exceeded by nearly double. In that setting the
choice of toxicity metric can be of great importance, and a
clear framework outlining the required methods to be
adopted is essential.
As discussed in Fisher and Fox (2023), the derivation of

NSEC depends heavily on the estimation of uncertainty in
the α (y‐intercept) parameter. This means that the statistical
methods used must be appropriate and able to accurately
capture the level of variability observed in the control
treatment. Furthermore, the NSEC will be sensitive to
sample size in a way similar to the NOEC (Fisher &
Fox, 2023). This is verified by our simulation study, which
clearly demonstrates that, for data based on a sigmoidal
model, the NSEC declines (becomes more conservative) as
sample size increases. This is expected, because experi-
ments with fewer replication result in greater uncertainty in
parameter estimation, including α, which reduces the lower‐
bound estimate and results in higher estimates of the NSEC
value. The impact of experimental design on the estimation
of NOEC is well understood (Green et al., 2018) and is di-
rectly analogous to the NSEC. Guidance on appropriate
experimental design and statistical methods for the esti-
mation of NSEC toxicity values are clearly warranted if these
approaches are to be adopted (Fisher & Fox, 2023). In ad-
dition, it may be reasonable to adopt a similar approach to
that of Negri et al. (2021) where the estimated NSEC values
are compared with a relevant ECx level, and the lower of the
two adopted to ensure an appropriate level of protection is
maintained, depending on the context of the analysis being
undertaken.
Although the N(S)EC estimates indicated some depend-

ence on sample size, as well as the number of treatment
concentrations, values were lower than the EC10 for even
the most poorly designed experiment in our simulation
study, suggesting that experimental designs would have to
be extremely poor for the NSEC to become a less con-
servative estimate of toxicity than the commonly used EC10
values and is therefore more appropriate as a measure of
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no‐effect. An interesting result of the simulation study
(where true ECx values are known) was that estimates of ECx
can also be influenced by sampling effort, with some sce-
narios resulting in substantial overestimates of ECx values
for poor experimental designs. Bias in the estimation of ECx
highlights that issues associated with appropriate ex-
perimental design are not specific to estimation of NSEC
and should be considered carefully by ecotoxicologists
more broadly. The logistics and cost associated with large
experimental designs may put them out of reach for
common regulatory studies. However, many designs that we
see in current commercial testing laboratories favor repli-
cation within treatments, likely because of the requirement
of the one‐way ANOVA methods used to generate NOECs.
We have found that redistributing replication within treat-
ments across a greater number of treatments can often be
achieved with little additional cost.

CONCLUSION
Overall, we have demonstrated that the NSEC method

proposed by Fisher and Fox (2023) could provide an effec-
tive estimate of NEC that can be used when response data
do not demonstrate a clear threshold. Embedded in a
model‐averaging approach, the NSEC and NEC can be
combined to yield estimates of N(S)ECs, along with esti-
mation of their uncertainty within a single analysis frame-
work. The outcome is a framework for CR analysis that is
robust to uncertainty in the appropriate model formulation,
and for which resulting no‐effect toxicity estimates can be
confidently integrated into the relevant risk assessment
framework, such as the SSD.
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