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Abstract

The bayesnec package has been developed for R to fit concentration (dose)-response
curves (CR) to toxicity data for the purpose of deriving no-effect-concentration (NEC), no-
significant-effect-concentration (NSEC), and effect-concentration (of specified percentage
“x”, ECx) thresholds from non-linear models fitted using Bayesian Hamiltonian Monte
Carlo (HMC) via R packages brms and rstan or cmdstanr. In bayesnec it is possible to fit
a single model, custom model-set, specific model-set or all of the available models. When
multiple models are specified, the bnec() function returns a model weighted average
estimate of predicted posterior values. A range of support functions and methods is also
included to work with the returned single, or multi-model objects that allow extraction
of raw, or model averaged predicted, NEC, NSEC and ECx values and to interrogate
the fitted model or model-set. By combining Bayesian methods with model averaging,
bayesnec provides a single estimate of toxicity and associated uncertainty that can be
directly integrated into risk assessment frameworks.
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1. Introduction
Concentration-response (CR) modeling (also known as dose-response modeling or dose-response
analysis) is a key tool for assessing toxicity and deriving the toxicity thresholds used in the
risk assessments that underpin protection of human health and the environment. It is widely
used in the disciplines of pharmacology, toxicology and ecotoxicology, where parametric non-
linear regression methods are used to model response data of interest, with the resulting
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fitted models used to estimate critical thresholds of concern. These thresholds may be used
directly to assess risk (e.g., see Fisher, Walshe, Bessell-Browne, and Jones 2018), or are subse-
quently incorporated into a broader population-level risk assessment framework (e.g., Warne
et al. 2015). Typical thresholds derived from CR modeling include the effect-concentration
of defined percentage “x” (ECx) and the no-effect-concentration (NEC), the latter being the
generally preferred option (Fox 2008; Warne et al. 2015, 2018). In addition, the no-significant-
effect-concentration (NSEC) has also been recently defined (Fisher and Fox 2023), and may
represent a good alternative estimate of “no-effect” concentrations when the threshold models
required to derive true NEC estimates are not appropriate (Fisher and Fox 2023; Fisher, Fox,
Negri, Van Dam, Flores, and Koppel 2024b).
In qualitative terms, CR models are typically a decreasing function of concentration, whereby
the response may remain relatively stable for the initial portion of the curve, and then decays
at some rate to zero (or some other, lower bound at high concentration). An example is death
of an organism resulting from ever increasing concentrations of a toxic pollutant. However,
often the underlying mechanisms describing CR relationships are not known, and therefore
numerous alternative non-linear CR equations have been proposed (e.g., models in drc, Ritz,
Baty, Streibig, and Gerhard 2015). These can be broadly grouped into two main “model
categories” (see Section 2.1 for the mathematical definition of each model): NEC models –
threshold models which contain a step function comprising the “break-point” after which the
predictor systematically alters the response (Fox 2010); and Smooth transition models that
are typically used for estimating effect concentrations of a specified effect (e.g., ECx models).
They may or may not encompass the EC50 as a parameter (Ritz et al. 2015). Each of these
two groups can be further split into two categories depending on whether the initial portion
of the curve is flat, or increasing – the latter being known as hormesis models (Ritz et al.
2015).
The above model categories mostly comprise non-linear equations, thereby increasing the
technical complexity of model fitting. CR experimental designs are often also complex, and
may require the addition of multi-level, hierarchical effects. Examples might include a random
offset to model non-independence of replicates housed together in tanks, or where there are
repeated measurements on individual genotypes of a test species. Additionally, CR data are of
varied nature, with the measured response data taking a wide range of natural distributions.
For instance, response data may be unbounded continuous (e.g., growth when shrinkage
is possible), or positive continuous (e.g., growth in the absence of shrinkage), proportional
(e.g., fertilization success), or binary (e.g., survival). To the best of our knowledge, there is
no open-source statistical software dedicated to CR modeling which allows for appropriate
model and error distribution specification depending on the input data. However, there is
a wide array of multi-purpose packages for fitting non-linear generalized hierarchical models
in R. For example, to list a few, nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team
2024), lme4 (Pinheiro et al. 2024), rjags (Su and Yajima 2024) and rstan (Stan Development
Team 2024).
While CR modeling can be carried out using generic non-linear modeling software packages,
this can be cumbersome in practice, requiring extensive manual programming to obtain the
necessary, often relatively standard outputs. The drc package (Ritz and Streibig 2005; Ritz
et al. 2015) was developed as a user friendly frequentist solution to CR modeling in R, and is
currently widely used across a range of disciplines. The drc package implements a broad range
of non-linear CR models, provides facilities for ranking model fits based on AIC (Burnham
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and Anderson 2002), joint modeling of multiple response curves, and supports a range of
estimation procedures (Ritz et al. 2015). Section 4 provides a formal comparison between drc
and bayesnec standard output using default argument values.

Estimates of uncertainty in parameters and derived thresholds are critical for effective inte-
gration of threshold estimates into risk assessment and formal decision frameworks (Fisher
et al. 2018). Bayesian methods allow robust quantification of uncertainty with intuitive and
direct probabilistic meaning (Ellison 1996), and are therefore a useful platform for CR mod-
eling in most settings. Furthermore, the posterior draws generated through Bayesian model
fitting methods provide a rich resource that can be used to explore synergistic and antagonis-
tic impacts (Fisher, Bessell-Browne, and Jones 2019a; Flores et al. 2021), propagate toxicity
estimate uncertainty (Charles, Wu, and Ducrot 2020; Gottschalk and Nowack 2013), and test
hypotheses of no-effect (Neal 2006).

There is a wide array of packages available for Bayesian model fitting via Markov chain Monte
Carlo methods, including WinBUGS (Lunn, Thomas, Best, and Spiegelhalter 2000), JAGS
(Plummer 2003) and Stan (Carpenter et al. 2017), that seamlessly interface with R through
packages such as R2WinBUGS, R2jags (Su and Yajima 2024) and rstan (Stan Development
Team 2024). These packages require coding in R and additional model specification in custom
languages – which might involve non-trivial coding, extensive debugging and optimization
that is often time consuming and requires specialist expertise, all of which might add a
learning/application barrier to many potential users. Several extension packages which aim
to reduce that barrier have recently become available, principally brms (Bürkner 2017), that
allows a broad range of models to be easily fitted using rstan (Stan Development Team 2024)
or cmdstanr (Gabry and Češnovar 2024) through simpler lme4-like formula syntax. However,
even with packages like brms, Bayesian model fitting can be difficult to automate across all
potential use cases, particularly with respect to specifying valid initial parameter values and
appropriate priors. In addition, as was the motivation for the development of the drc package
in the frequentist setting, the R code required for fitting non-linear models and extracting the
relevant outputs (e.g., NEC, ECx) and their standard errors can be cumbersome in practice,
and even more so in the Bayesian setting where model fits contain multiple posterior draws.

The greater complexity associated with Bayesian model fitting has likely hindered the up-
take of Bayesian statistics for CR threshold derivation across the broader ecotoxicology
and toxicology communities, who may not have access to specialist statistical expertise
(Fisher et al. 2019b). Package bayesnec (Fisher, Barneche, Ricardo, and Fox 2024a) ver-
sion 2.1.3.0 is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=bayesnec and builds upon an implementation of the NEC
model described in Fox (2010) and Pires, Branco, Picado, and Mendonca (2002). The
bayesnec package provides an accessible interface specifically for fitting NEC and other CR
models using Bayesian methods. A variety of models can be specified based on the known
distribution of the “concentration” or “dose” variable (the predictor, x) as well as the “re-
sponse” (y) variable. The model formula, including priors and initial values required to call
brms are automatically generated based on information contained in the supplied data. A
range of tools is supplied to aid the user in interrogating model fits, plotting and generating
predicted values, as well as extracting the standard outputs, such as NEC and ECx, either as
a full posterior draw or in summary form.

https://CRAN.R-project.org/package=bayesnec
https://CRAN.R-project.org/package=bayesnec
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2. Technical details
In Bayesian inference, model parameters and their inherent uncertainty are estimated as
statistical probability distributions. This is achieved by combining an a-priori probability
distribution for each parameter (the “priors”, p(θ)) with the likelihood of the observed data,
D, given the model parameters, p(D|θ), to yield a so-called posterior probability distribution,
p(θ|D):

p(θ|D) = p(D|θ)p(θ)∫
θ p(D|θ)p(θ)dθ

∝ p(D|θ)p(θ).

In many cases, the denominator (also known as “evidence” or “marginal”) is analytically
intractable, and therefore we resort to numerical approximations such as Markov chain Monte
Carlo (MCMC). The bayesnec package uses the extensive functionality of the brms package
to write model code as well as fit models via a Stan program (Stan Development Team 2021),
which typically defines a Bayesian posterior as a log density function conditioned on the
data. Stan employs Hamiltonian Monte Carlo (HMC) – a type of MCMC algorithm – for its
fitting mechanism, and automatically optimizes the discretization time parameter to match
an acceptance-rate target using the no-U-turn sampling (NUTS) algorithm (Hoffman and
Gelman 2014). The bayesnec package first takes the input model or model-set (via its custom
formula class, ‘bayesnecformula’) in conjunction with potential user-defined hierarchical
effects, to generate an object of class ‘brmsformula’. Then, based on the package-(or user-
)specified priors, and response model distribution, it calls brms (Bürkner 2017, 2018) to
generate the Stan program code and fit the model through either rstan (Stan Development
Team 2024) or cmdstanr (Gabry and Češnovar 2024). In doing so, bayesnec (as of version
2.1.3.0) allows for response variables to be modeled with a variety of statistical distributions:
Gaussian, Poisson, binomial, gamma, negative binomial, beta and beta-binomial. Future
implementations of bayesnec might include additional distributions which are currently only
implemented in brms. In addition to greater flexibility in the available response distributions,
bayesnec includes a larger set of 23 models (see below), including many of the commonly-used
models in drc (Ritz et al. 2015).

2.1. Models in bayesnec
Where possible we have aimed for consistency in the interpretable meaning of the individual
parameters across models. Across the currently implemented model sets, models contain from
two (basic linear or exponential decay, see ecxlin or ecxexp) to five possible parameters
(nechorme4), including:
τ = top, usually interpretable as either the response’s intercept or the upper plateau repre-
senting the mean concentration of the response at zero concentration;
η = NEC, the No-Effect-Concentration value (the concentration value where the breakpoint in
the regression is);
β = beta, generally the exponential decay rate of response, either from 0 concentration or
from the estimated η value, with the exception of the neclinhorme model where it represents
a linear decay from η because slope (α) is required for the linear increase (see below);
δ = bot, representing the lower asymptotic response at infinite concentration;
α = slope, the linear decay rate in the models neclin and ecxlin, or the linear increase
rate prior to η for all hormesis models;
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ω = EC50, notionally the 50% effect concentration but may be influenced by scaling and should
therefore not be strictly interpreted as such,
ϵ = d, the exponent in the ecxsigm and necisgm models, and
ϕ = f, A scaling exponent exclusive to model ecxll5.
In addition to the model parameters, all NEC models (prefix "nec") have a step (indicator)
function used to define the breakpoint in the regression, which can be defined as:

f(xi, η) =
{

0, xi − η < 0,

1, xi − η ≥ 0.

Note that strictly positive parameters (for example, β and ϵ) have been estimated on the
natural log scale to allow the use of normal priors and stabilize model fitting.

ECx models (prefix "ecx")
ecxlin is a basic linear decay model, given by the equation: yi = τ − eαxi with the following
‘brmsformula’: y ~ top - exp(slope) * x. Because the model contains linear, predictors
it is not suitable for 0–1 bounded data (i.e., binomial and beta families with an "identity"
link function). As the model includes a linear decline with concentration, it is also not suitable
for 0 bounded data (gamma, Poisson, negative binomial with an "identity" link).
ecxexp is a basic exponential decay model, given by the equation: yi = τe−eβxi with the
following ‘brmsformula’: y ~ top * exp(-exp(beta) * x). The model is 0-bounded, thus
not suitable for Gaussian response data or the use of a "logit" or "log" link function.
ecxsigm is a simple sigmoidal decay model, given by the equation: yi = τe−eβxeϵ

i with
the following ‘brmsformula’: y ~ top * exp(-exp(beta) * xˆexp(d)). The model is 0-
bounded, thus not suitable for Gaussian response data or the use of a "logit" or "log" link
function.
ecx4param is a 4-parameter sigmoidal decay model, given by the equation: yi = τ+(δ−τ)/(1+
eeβ(ω−xi)) with the following ‘brmsformula’: y ~ top + (bot - top)/(1 + exp((ec50 -
x) * exp(beta))).
ecxwb1 is a 4-parameter sigmoidal decay model which is a slight reformulation of the Weibull1
model of Ritz et al. (2015), given by the equation: yi = δ+(τ −δ)e−eeβ(xi−ω) with the following
‘brmsformula’: y ~ bot + (top - bot) * exp(-exp(exp(beta) * (x - ec50))).
ecxwb1p3 is a 3-parameter sigmoidal decay model, equivalent to the ecxwb1 model where δ

(bot) is defined as 0, given by the equation: yi = 0 + (τ − 0)e−eeβ(xi−ω) with the following
‘brmsformula’: y ~ 0 + (top - 0) * exp(-exp(exp(beta) * (x - ec50))). The model
is 0-bounded, thus not suitable for Gaussian response data or the use of a "logit" or "log"
link function.
ecxwb2 is a 4-parameter sigmoidal decay model which is a slight reformulation of the Weibull2
model of Ritz et al. (2015), given by the equation: yi = δ + (τ − δ)(1 − e−eeβ(xi−ω)) with the
following ‘brmsformula’: y ~ bot + (top - bot) * (1 - exp(-exp(-exp(beta) * (x -
ec50)))). While very similar to the ecxwb1 (according to Ritz et al. 2015), fitted ecxwb1
and ecxwb2 models can differ slightly.
ecxwb2p3 is a 3-parameter sigmoidal decay model, equivalent to the ecxwb2 model where the
parameter δ (bot) is defined as 0, given by the equation: yi = 0 + (τ − 0)(1 − e−eeβ(xi−ω)) with
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Figure 1: Representative shapes of currently implemented bayesnec ecx models.

the following ‘brmsformula’: y ~ 0 + (top - 0) * (1 - exp(-exp(-exp(beta) * (x -
ec50)))). The model is 0-bounded, thus not suitable for Gaussian response data or the use
of a logit or log link function.
ecxll5 is a 5-parameter sigmoidal log-logistic decay model, which is a slight reformulation of
the LL.5 model of Ritz et al. (2015), given by the equation: yi = δ +(τ −δ)/(1+e−eβ(xi−ω))eϕ

with the following ‘brmsformula’: y ~ bot + (top - bot)/(1 + exp(exp(beta) * (x -
ec50)))ˆexp(f).
ecxll4 is a 4-parameter sigmoidal log-logistic decay model, equivalent to the ecxll5 model,
but where the parameter ϕ (f) is defined as 0, given by the equation: yi = δ + (τ − δ)/(1 +
eeβ(xi−ω)) with the following ‘brmsformula’: y ~ bot + (top - bot)/(1 + exp(exp(beta)
* (x - ec50))).
ecxll3 is a 3-parameter sigmoidal log-logistic decay model, equivalent to the ecxll5 model,
but where the parameters ϕ (f) and δ (bot) are both defined as 0, given by the equation:
yi = 0 + (τ − 0)/(1 + eeβ(xi−ω)) with the following ‘brmsformula’: y ~ 0 + (top - 0)/(1 +
exp(exp(beta) * (x - ec50))). The model is 0-bounded, thus not suitable for Gaussian
response data or the use of a "logit" or "log" link function.
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ecxhormebc5 is a 5 parameter log-logistic model modified to accommodate a non-linear
hormesis at low concentrations. It has been modified from to the “Brain-Cousens” (BC.5)
model of Ritz et al. (2015), given by the equation: yi = δ+(τ −δ+eαx)/(1+eeβ(xi−ω)) with the
following ‘brmsformula’: y ~ bot + (top - bot + exp(slope) * x) / (1 + exp(exp(
beta) * (x - ec50))).
ecxhormebc4 is a 5-parameter log-logistic model similar to the exchormebc5 model but with a
lower bound δ (bot) of 0, given by the equation: yi = 0+(τ −0+eαx)/(1+eeβ(xi−ω)) with the
following ‘brmsformula’: y ~ 0 + (top - 0 + exp(slope) * x)/(1 + exp(exp(beta) *
(x - ec50))). The model is 0-bounded, thus not suitable for Gaussian response data or the
use of a "logit" or "log" link function.

NEC models (prefix "nec")
neclin is a basic linear decay model equivalent to ecxlin with the addition of the NEC step
function, given by the equation: yi = τ −eα (xi − η) f(xi, η) with the following ‘brmsformula’:
y ~ top - exp(slope) * (x - nec) * step(x - nec). Because the model contains linear
predictors it is not suitable for 0–1 bounded data (binomial and beta distributions with
"identity" link). As the model includes a linear decline with concentration, it is also not
suitable for 0–∞ bounded data (gamma, Poisson, negative binomial with "identity" link).
nec3param is a basic exponential decay model equivalent to ecxexp with the addition of
the NEC step function, given by the equation: yi = τe−eβ(xi−η)f(xi,η) with the following
‘brmsformula’: y ~ top * exp(-exp(beta) * (x - nec) * step(x - nec)). For bino-
mially distributed response data in the case of "identity" link this model is equivalent to
that in Fox (2010). The model is 0-bounded, thus not suitable for Gaussian response data or
the use of a "logit" or "log" link function.
nec4param is a equivalent to the nec3param model, but with an additional parameter defin-
ing the lower bound (parameter δ (bot)), given by the equation: yi = δ+(τ −δ)e−eβ(xi−η)f(xi,η)

with the following ‘brmsformula’: y ~ bot + (top - bot) * exp(-exp(beta) * (x - nec)
* step(x - nec)).
nechorme is a basic exponential decay model with an NEC step function equivalent to
nec3param, with the addition of a linear increase prior to η, given by the equation yi =
(τ + eαxi)e−eβ(xi−η)f(xi,η) with the following ‘brmsformula’: y ~ (top + exp(slope) * x)
* exp(-exp(beta) * (x - nec) * step(x - nec)). The nechorme model is a hormesis
model (Mattson 2008), allowing an initial increase in the response variable at concentrations
below η. The model is 0-bounded, thus not suitable for Gaussian response data or the use of a
"logit" or "log" link function. In this case the linear version (neclinhorme) should be used.
nechormepwr is a basic exponential decay model with an NEC step function equivalent
to nec3param, with the addition of a power increase prior to η, given by the equation:
yi = (τ+x

1/(1+eα)
i )e−eβ(xi−η)f(xi,η) with the following ‘brmsformula’: y ~ (top + xˆ(1 / (1

+ exp(slope)))) * exp(-exp(beta) * (x - nec) * step(x - nec)). Being a hormesis
model (Mattson 2008), nechormepwr allows an initial increase in the response variable at con-
centrations below η. The model is 0-bounded, thus not suitable for Gaussian response data
or the use of a "logit" or "log" link function. Because the model can generate predictions
> 1 it should not be used for binomial and beta distributions with "identity" link. In this
case the nechromepwr01 model should be used.
neclinhorme is a basic linear decay model with an NEC step function equivalent to neclin,
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Figure 2: Representative shapes of currently implemented bayesnec nec models.

with the addition of a linear increase prior to η, given by the equation: yi = (τ + eαxi) −
eβ (xi − η) f(xi, η) and ‘brmsformula’: y ~ (top + exp(slope) * x) - exp(beta) * (x
- nec) * step(x - nec). The neclinhorme model is a hormesis model (Mattson 2008),
allowing an initial increase in the response variable at concentrations below η. This model
contains linear predictors and is not suitable for 0–1 bounded data (binomial and beta distri-
butions with "identity" link). As the model includes a linear decline with concentration, it is
also not suitable for 0–∞ bounded data (gamma, Poisson, negative binomial with "identity"
link).
nechorme4 is five parameter decay model with an NEC step function equivalent to nec4param
with the addition of a linear increase prior to η, given by the equation: yi = δ + ((τ + eαxi) −
δ)e−eβ(xi−η)f(xi,η) with the following ‘brmsformula’: y ~ bot + ((top + exp(slope) * x)
- bot) * exp(-exp(beta) * (x - nec) * step(x - nec)). The nechorme4 model is a
hormesis model (Mattson 2008), allowing an initial increase in the response variable at con-
centrations below η.
nechorme4pwr is five parameter decay model similar to nec4param: It contains an NEC
step function but with a power increase prior to η, given by the equation: yi = δ + ((τ +
x

1/(1+eα)
i )−δ)e−eβ(xi−η)f(xi,η) with the following ‘brmsformula’: y ~ bot + ((top + xˆ(1 /

(1 + exp(slope)))) - bot) * exp(-exp(beta) * (x - nec) * step(x - nec)). Being
a hormesis model (Mattson 2008), nechorme4pwr allows an initial power increase in the re-
sponse variable at concentrations below η. Because the model can generate predictions > 1
it should not be used for binomial and beta distributions with "identity" link. In this case
the nechromepwr01 model should be used.
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nechormepwr01 is a basic exponential decay model with an NEC step function equivalent
to nec3param, with the addition of a power increase prior to η, given by the equation: yi =(

1
(1+((1/τ)−1)e−eαxi

)
e−eβ(xi−η)f(xi,η) with the following ‘brmsformula’: y ~ (1 / (1 + ((1 /

top) - 1) * exp(-exp(slope) * x))) * exp(-exp(beta) * (x - nec) * step(x - nec)).
Being a hormesis model (Mattson 2008), nechormepwr01 allows an initial increase in the re-
sponse variable at concentrations below η. The model is 0-bounded, thus not suitable for
Gaussian response data or the use of a "logit" or "log" link function. In this case the linear
version (neclinhorme) should be used.
necsigm is a basic exponential decay model equivalent to ecxlin with the addition of the
NEC step function, given by the equation: yi = τe−eβ((xi−η)f(xi,η))eϵ

f(xi,η) with the following
‘brmsformula’: y ~ top * exp(-exp(beta) * (step(x - nec) * (x - nec))ˆexp(d) *
step(x - nec)). The model is 0-bounded, thus not suitable for Gaussian response data or
the use of a "logit" or "log" link function. Estimation of No-Effect-Concentrations using
this model are not currently recommended without further testing, as the behavior is currently
unstable, see supplementary material in Fisher et al. (2024b).

2.2. Priors on model parameters

To undertake a Bayesian analysis, prior probability densities of the parameters of the model
must first be defined. Sometimes there may be substantial prior knowledge, for example when
pilot data or data from a previous experiment exist for a given response curve. In this case the
prior probability distribution may be quite narrow (highly “informative”) and will therefore
be influential in the characterization of the posterior, especially when subsequent data are
scarce or highly variable. However, in our experience in ecology and related disciplines, such
prior knowledge is generally the exception. Where no quantitative prior information exists,
it is common in Bayesian statistics to use either “vague” or “weakly” informative priors.
The use of “vague”, “diffuse”, “flat” or otherwise so-called “uninformative” priors is no longer
recommended (Banner, Irvine, and Rodhouse 2020). Such priors generally form the default for
many Bayesian packages, and are often used in practice without critical thought or evaluation,
possibly as a result of fear of being too subjective (Banner et al. 2020). However, even vague
priors can have a substantial influence on the outcome of an analysis (Depaoli, Winter, and
Visser 2020; Gelman, Simpson, and Betancourt 2017). Instead, it is better to use weakly
informative, “generative” priors – that is priors that are based on probability distributions
that interact sensibly with the likelihood to produce a meaningful data generating mechanism
(Gelman et al. 2017).
Considerable thought has gone into development of an algorithm to build default “weakly”
informative priors for fitting models in bayesnec. The default priors are “weakly” informative
in that in addition to specifying the relevant statistical family that appropriately captures
the parameter’s theoretical statistical distribution, when external subjective information is
unavailable (no priors are supplied by the user) we also use information contained within the
observed data to build priors with appropriate scaling. The procedure is described in more
detail below, but the algorithm effectively centers the probability density of the prior within
a plausible region of the parameter space, ensures priors are appropriately scaled relative
to the range of the response and predictor data, and/or priors are constrained to sensible
bounds. These weakly informative priors are used to help constrain the underlying routines
so that they are less likely to consider what the researcher would deem highly improbable
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estimates, that may also cause the routines to become unstable resulting in failed model
fits. Weakly informative priors can be particularly helpful in complex non-linear modeling to
ensure reliable convergence. These types of priors specify the general shape and bounds of
the probability distribution for a given parameter, whilst remaining sufficiently broad so as
not to influence the parameter’s estimated posterior distribution (given a reasonable amount
of observed data). In this sense, appropriately weak priors should yield analytical outcomes
that share the same level of objectivity as equivalent frequentist approaches, whilst yielding
robust parameter estimates with probabilistically interpretable uncertainty bounds.
While we sacrifice Bayesian coherence by using features of the data to calibrate our default pri-
ors (see Chipman, George, and McCulloch (2010) for another example of such an approach),
our primary motivation is to facilitate easy implementation of bayesnec in practice, and to
ensure model stability and reliable model fits. Note, however that it is critical for users to
interrogate these default priors, using for example, sensitivity analysis (Depaoli et al. 2020)
and ensure they are appropriate given the data (Gelman et al. 2017). Priors are automati-
cally saved as part of the ‘brmsfit’ and ‘bayesnecfit’ models, and there are functions for
extracting the priors used, as well as plotting these in comparison to the resulting posterior
distribution (see Section 3.5). Care should be taken to ensure that the default priors are
sufficiently weak such that they have little influence on posterior estimates.

Priors for response-scaled parameters
Only the parameters τ = top and δ = bot relate directly to the response variable’s distribu-
tion. For Gaussian-distributed responses (or any response variable for which the link ensures
valid values of the response can take from −∞ to ∞, including "log" and "logit") priors
are Gaussian with a mean set at the 90th and 10th percentiles of the response for parame-
ters τ = top and δ = bot, respectively, and a standard deviation of 2.5 times the standard
deviation of the response (on the appropriate link scale). In this way bayesnec attempts to
construct a prior that scales appropriately with the response data, with greatest density near
the most likely region of the response for both τ = top and δ = bot. The priors for top and
bot can be set quite narrow and still remain relatively “weak” because bayesnec only allows
models that represent an overall decrease from the start to the end of the concentration range.
Because this directional relationship is pre-defined, it is reasonable to presume that the true
value of τ = top, for example, should be relatively near the upper quantile of the observed
response data, and a somewhat narrow prior on that assumption can be used without being
strongly informative. In the context of a standard deviation across the whole response range,
a value of 2.5 can still be considered relatively broad and should have little influence on the
parameter’s posterior density.
For Poisson-, negative-binomial- and gamma-distributed response variables, the response can-
not take negative values and therefore Gaussian priors are unsuitable. Instead, we use gamma
priors with a mean scaled to correspond to the 75th and 25th percentiles of the response for
τ = top and δ = bot, respectively. The mean (µ) is linked mathematically to the shape (s)
and rate parameters (r) by the equation (Becker, Chambers, and Wilks 1988)

µ = s · (1/r)

with the shape parameter being set to 2 by default. The value of 2 was selected based on
trial and error through initial testing, as this appeared to produce relatively broad priors that
were still centered around feasible values for these parameters.
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For the binomial, beta, and beta-binomial families, estimates for τ = top and δ = bot must
necessarily be constrained between 0 and 1 when modeled on the identity link. Because of
this constraint, there is no need to adjust scaling based on the response. In this case bayesnec
uses beta(5, 2) and beta(2, 5) priors to provide a broad density centered across the upper
and lower 0 to 1 range for the τ = top and δ = bot parameters respectively.

Priors for predictor-scaled parameters

The parameters η = NEC and ω = EC50 scale according to the predictor variable because
both of these are estimated in units of the predictor (usually concentration). To stabilize
model fitting, the η = NEC and ω = EC50 parameters are bounded to the upper and lower
observed range in the predictor, under the assumption that the range of concentrations in the
experiment were sufficient to cover the full range of the response outcomes. Note that this
assumption may not always hold if the data are from an experiment that is poorly designed,
and the outcome of any analysis resulting in either η or ω being estimated at the bounds
of the predictor data range should be interpreted with caution. The priors used reflect the
characteristics of the observed data that are used to predict the appropriate family. If the
predictor variable is strictly positive, a gamma prior is used, with maximum density (µ, see
above) at the median value of the predictor, and a shape parameter of 5. If the predictor
variable is truncated at both 0 and 1, a beta(2, 2) prior is used. For predictor variables
ranging from −∞ to ∞, a Gaussian prior is used, with a mean set at the median of the
predictor values and a standard deviation of 10 times the standard deviation of the predictor
variable. A much broader prior is required for the η = NEC and ω = EC50 estimates than
for example τ = top and δ = bot, because depending on the curve that is fit estimates for
these parameters may fall almost anywhere along the predictor range - especially if the CR
experiment was badly designed. We set the maximum density for these parameters as the
median of the predictor value (in the hope that the experiment has been well designed and
the inflection point is somewhere in the center of the predictor range), but it is important
that there is substantial range in the prior, because the true values may be quite low or high
across the predictor range, thus a very broad standard deviation of 10 is used.

Priors for other parameters

For the parameters β = beta, α = slope and ϵ = d we first ensured any relevant trans-
formations in the model formula such that theoretical values with the range −∞ to ∞ are
allowable, and a normal(0, 5) (mean and standard deviation) prior is used. For example in
the nec3param model, β = beta is an exponential decay parameter, which must by defini-
tion be bounded to 0 and ∞. Calling exp(beta) in the model formula ensures the exponent
meets these requirements. Note also that a mean of 0 and standard deviation of 5 represents
a relatively broad prior on this exponential scaling, so this is usually a weakly informative
prior in practice.

User-specified priors

In bayesnec we chose to provide default weakly informative priors that are scaled accord-
ing to the characteristics of the input data (discussed in detail above) in some cases. They
were designed to be somewhat informative (relative to each parameter’s region) but that
would, in data-sufficient cases, return fits without HMC divergent transitions in Stan. De-
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fault “blanket” priors are not currently provided for non-linear models by the model-building
underlying package brms, and we note that defining the extent to which a prior is vague
or weakly/strongly informative ultimately depends on the likelihood (Gelman et al. 2017).
Therefore, there may be situations where the default bayesnec priors do not produce an ap-
propriate fit, or the user wants to provide customized priors. For example, the default priors
may be too informative, yielding unreasonably tight confidence bands (although this is only
likely where there are few data or unique values of the predictor variable). Conversely, priors
may be too vague, leading to poor model convergence. Alternatively, the default priors may
be of the wrong statistical family if there was insufficient information in the provided data
for bayesnec to correctly predict the appropriate ones to use. The priors used in the default
model fit can be extracted using pull_prior, and a sample or plot of prior values can be
obtained from the individual brms model fits through the function sample_priors() which
samples directly from the "prior" element in the ‘brmsfit’ object (pull_brmsfit(fit) |>
prior_summary() |> sample_priors(), see Figure 5). We show example usage of these
functions under the Section 3.5 below.

2.3. Model averaging

Multi-model inference can be useful where there is a range of plausible models that could
be used (Burnham and Anderson 2002) and has been recently adopted in ecotoxicology for
Species Sensitivity Distribution (SSD) model inference (Thorley and Schwarz 2023; Fox et al.
2021; Dalgarno 2021). The approach may have considerable value in CR modeling because
there is often no a priori knowledge of the functional form that the response relationship
should take. In this case, model averaging can be a useful way of allowing the data to drive
the model selection process, with weights proportional to how well the individual models fit
the data. Well-fitting models will have high weights, dominating the model averaged outcome.
Conversely, poorly fitting models will have very low model weights and will therefore have little
influence on the outcome. Where multiple models fit the data equally well, these can equally
influence the outcome, and the resultant posterior predictions reflect that model uncertainty.
The bayesnec package adopts the weighting methods implemented via the loo (Vehtari et al.
2024) package in R. loo provides an efficient approximate leave-one-out cross-validation (LOO)
algorithm for Bayesian models fit using Markov chain Monte Carlo, as described in Vehtari,
Gelman, and Gabry (2017). The approximation uses Pareto smoothed importance sampling
(PSIS), a new procedure for regularizing importance weights and follows the implementation
described in Vehtari, Simpson, Gelman, Yao, and Gabry (2019). The loo package offers two
weighting methods, the "stacking" method, aimed to minimize prediction error (Yao, Ve-
htari, Simpson, and Gelman 2018), and the "pseudobma" method, with and without Bayesian
bootstrap (Vehtari et al. 2024, 2017). The stacking method (method = "stacking"), com-
bines all models by maximizing the leave-one-out predictive density of the combination dis-
tribution, such that it finds the optimal linear combining weights for maximizing the leave-
one-out log score (Vehtari et al. 2024). The pseudo-BMA method (method = "pseudobma")
finds the relative weights proportional to the theoretical expected log pointwise predictive
density of each model (Vehtari et al. 2024). The Bayesian bootstrap (when using method
= "pseudobma") takes into account the uncertainty of finite data points and regularizes the
weights away from the extremes of 0 and 1 (Vehtari et al. 2024). bayesnec currently uses by
default the "pseudobma" method (method = "pseudobma") with Bayesian bootstrap (BB =
TRUE), but this can be easily modified via argument loo_controls.
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3. Usage

3.1. The fitting function bnec()

The main working function in bayesnec is bnec(). We have attempted to make the bnec()
function as easy to use as possible, targeting the R user that is familiar with the usual model
fitting syntax in R, but without specialist expertise in non-linear modeling and Bayesian
statistics. We can run bnec() by supplying the argument formula: A special custom formula
which comprises the relationship between response and predictor, and the CR model (or
models) chosen to be fitted; and data: A ‘data.frame’ containing the data for the model
fitting.

3.2. The input formula

In its simplest syntax, the basic bnec() formula should be of the form:

R> response ~ crf(predictor, model = "a_model")

where the left-hand side of the formula is implemented exactly as in brms (see the “aterms”
Section of the brms::brm()’s help file). The right-hand side of the formula contains the
special internal function crf() (which stands for concentration-response function), and takes
the predictor (including any simple function transformations such as "log") and the desired
CR model or suite of models. As with any formula in R, the name of the terms need to
be exactly as they are in the input ‘data.frame’. For binomial or beta-binomial distributed
data, the user needs to include the trials() term to the left-hand side of the formula, e.g.,

R> response | trials(n_trials) ~ crf(log(predictor), model = "a_model")

The input formula can either be a character string or an object of class ‘bayesnecformula’.
Details about existing possibilities are detailed in the help files of ‘bayesnecformula’ and
check_formula. The argument model in the formula function crf() is a character string
indicating the name(s) of the desired model(s). Alternatively, it may also be one of "all",
meaning all of the available models will be fit; "ecx" meaning only models excluding the
η = NEC step parameter will be fit; "nec" meaning only models with a specific η = NEC step
parameter will be fit; "bot_free" meaning only models without a δ (bot, "bot") parameter
(without a lower plateau) will be fit; "zero_bounded" are models that are bounded to be
zero; or "decline" excludes all hormesis models, i.e., only allows a strict decline in response
across the whole predictor range (see above Section 2.1).
The class ‘bayesnecformula’ (generated by the function bayesnecformula() and its alias
bnf()) contains a model.frame() method which can be employed to manually inspect the
‘data.frame’ that will be used to run checks on the data suitability prior to model fitting,
e.g.,

R> library("bayesnec")
R> set.seed(17)
R> df <- data.frame(x = rgamma(100, 2, 0.1), y = rnorm(100))
R> form <- bnf(y ~ crf(log(x), model = "nec3param"))
R> head(model.frame(form, df))
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y log(x)
1 1.93723559 1.637897
2 -0.50355786 3.249447
3 0.09236529 2.786040
4 1.06937160 1.806777
5 -0.48396058 2.568040
6 -0.41780030 3.366183

3.3. Example

Here we use one of the package’s built-in data sets, nec_data, which is a simulated data set
based on the three parameter NEC model nec3param described in Section 2.1.

R> fit <- bnec(y ~ crf(x, model = "nec3param"), data = nec_data, seed = 17)

If a recognized model name is provided, a single model of the specified type is fit, and bnec()
returns an object of class ‘bayesnecfit’. If a vector of two or more of the available models
are supplied, or if one of the model-sets is specified, bnec() returns a model object of class
‘bayesmanecfit’ containing Bayesian model averaged predictions for the supplied models,
providing they were successfully fitted (see Section 2.3 above, and the help file of bnec() for
further details). By default, bnec() sets the number of chains to 4, the number of iterations
per chain to 10,000, and the size of the warm-up period to 4/5 of the number of iterations
(i.e., 8,000 by default).
bnec() will guess the most likely distribution for the response variable. This “guess” is
achieved through the internal function set_distribution(). This algorithm will assume
a binomial distribution for the response if data are integers and trials() is passed in the
formula call; Poisson if data are integers and there are no trials(); gamma if the data are
continuous, zero bounded and contain values greater than one; beta if data are continuous and
bounded to zero and one; and Gaussian if data are continuous and contain negative values.
The family can be set manually via the usual R syntax of calling the argument family and
specifying the desired distribution. bayesnec currently supports the use of the above listed
families, as well as the negative binomial and beta-binomial families that can be used in the
case of over-dispersed binomial and Poisson families respectively.
In the example here, the model was fitted assuming a beta distribution on an identity link
because the response is truncated at both 0 and 1 and contains decimal values. Note that
the default behavior in bayesnec is to use the "identity" link because the native link func-
tions for each family (e.g., "logit" for binomial, "log" for Poisson) introduce non-linear
transformation on formulas which are already non-linear. Note that estimates of ECx might
not be as expected when using link functions other than identity. Additionally, bnec() will
also generate appropriate priors for the internal brms::brm() model call. However, bnec()
allows the user to pass additional arguments to brms::brm() and therefore the user can, for
example, manually add specific distributions and link functions via the argument family, or
custom priors via the argument prior. Refer to the rich set of resources available for the
brms package at https://github.com/paul-buerkner/brms for further information.

https://github.com/paul-buerkner/brms
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3.4. Output classes and methods
Models fitted by bnec() will invariably inherit a class ‘bnecfit’ which carries three exclusive
methods: `+`(), c() and update(). The first two are used to append one or multiple models
to an existing fit, whereas the latter is used to update the fitting characteristics of an existing
model (e.g., change the number of iterations or warm-up period, or simply change the HMC
fitting parameters).
When bnec() fits a single CR model type, the output object also inherits the ‘bayesnecfit’
class. This class contains the ‘brmsfit’ object in addition to the mean predicted values and
summary estimates of each model parameter. Because the original motivation in the develop-
ment of bayesnec was the estimation of no-effect toxicity values, by default bnec() also returns
a full posterior distribution of the either the NEC (for nec models) or the NSEC (for ecx mod-
els, see Fisher and Fox 2023) estimate. If bnec() fits a custom set of models, or a package-pre-
defined model-set (e.g., model = "decline" in the input formula), the output object inherits
the ‘bayesmanecfit’ class. Differently from a ‘bayesnecfit’ object, ‘bayesmanecfit’ com-
prises a model weighted estimate of predicted posterior values of N(S)EC. This is a weighted
combined average of the NEC or the NSEC values, for all nec and ecx models respectively,
as described in Fisher et al. (2024b).
Regardless of whether bnec() generates a ‘bayesnecfit’ or ‘bayesmanecfit’ class, the under-
lying ‘brmsfit’ object can be extracted using the function pull_brmsfit(). The ‘brmsfit’
contains all of the information usually returned from a call to brm(), including the posterior
samples of all parameters in the model, from which predictions can be made and custom
probabilities calculated.
Both ‘bayesnecfit’ and ‘bayesmanecfit’ classes contain methods for summary(), print(),
predict(), model.frame(), fitted(), posterior_predict(), posterior_edpred() and
plotting (plot() and autoplot()). Wherever possible, these methods have been implemented
such they are consistent with other model fitting packages in R, and in particular brms. We
have also implemented a range of custom functions for extracting effect concentrations and
related threshold values (nec(), ecx() and nsec()) that, in the case of a ‘bayesmanecfit’,
return model weighted estimates.
The summary() method provides the usual summary of model parameters and any relevant
model fit statistics as returned in the underlying brm() model fit(s). In the specific case of a
‘bayesmanecfit’ object, the summary includes a list of fitted models, their respective model
weights, and a model-averaged no-effect toxicity estimate. Where the fitted model(s) are nec
models (threshold models, containing a step function) the no-effect estimate is a true no-
effect-concentration (NEC, see Fox 2010). Where the fitted model(s) are smooth ecx models
with no step function, the no-effect estimate is a no-significant-effect-concentration (NSEC,
see Fisher and Fox 2023). In the case of a ‘bayesmanecfit’ that contains a mixture of both
nec and ecx models, the no-effect estimate is a model averaged combination of the NEC and
NSEC estimates, and is reported as the N(S)EC (see Fisher et al. 2024b).

R> summary(fit)

Object of class bayesnecfit containing the nec3param model

Family: beta
Links: mu = identity; phi = identity
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Formula: y ~ top * exp(-exp(beta) * (x - nec) * step(x - nec))
top ~ 1
beta ~ 1
nec ~ 1

Data: data (Number of observations: 100)
Draws: 4 chains, each with iter = 10000; warmup = 8000; thin = 1;

total post-warmup draws = 8000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

top 0.89 0.01 0.88 0.90 1.00 6929 5865
beta 0.54 0.06 0.43 0.65 1.00 5867 5229
nec 1.54 0.02 1.50 1.57 1.00 5770 4875

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

phi 51.99 7.32 38.83 67.80 1.00 6461 5368

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Estimate Q2.5 Q97.5
NEC 1.54 1.50 1.57

Bayesian R2 estimates:
Estimate Est.Error Q2.5 Q97.5

R2 0.96 0.00 0.96 0.97

As mentioned above, the visualization of a particular model fit can be done via either base R
(plot()) and ggplot2 (Wickham 2016) (autoplot()).

R> round_digits <- function(x) sprintf("%.2f", x)
R> autoplot(fit, xform = exp) +
+ scale_x_continuous(trans = "log", labels = round_digits)

By default the plot shows the fitted posterior curve with 95% credible intervals, along with
an estimate of the η = NEC value. For more examples using bayesnec models for inference see
the on-line the vignettes at https://open-aims.github.io/bayesnec/articles/, as well
as Section 6.1.

3.5. Model diagnostics

The bayesnec package will return warning messages as part of the summary method where
parts of the model have not converged (rhat, R̂ > 1.05; see Vehtari, Gelman, Simpson,
Carpenter, and Burkner 2021) and indicate the number of any divergent transitions (if any).
These messages include guidance on running more iterations, adjusting priors and or adjusting

https://open-aims.github.io/bayesnec/articles/
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Figure 3: ggplot2 autoplot() of the example fit. The solid black line is the fitted median of
the posterior prediction, dashed black lines are the 95% credible intervals, and the vertical
lines show the estimated NEC value.

other fitting criteria, such as adapt_delta. The summary method for a ‘bayesnecfit’ object
also indicates the effective sample size for estimates of each of the parameters, and for a
‘bayesmanecfit’ a warning is returned if any of the models have parameters with an effective
sample size of < 100.
In addition to the diagnostic information reported by the summary method, a range of tools
is available to assess model fit, including an estimate of overdispersion (for relevant families),
an extension of the brms rhat() function that can be applied to both ‘bayesnecfit’ and
‘bayesmanecfit’ model objects, and a function check_chains() that can be used to visually
assess chain mixing and stability.
All diagnostic functions available in brms and rstan can be used on the underlying brm model
fit by extracting the fitted brms model from the ‘bayesnecfit’ or ‘bayesmanecfit’ model
object using the function pull_brmsfit(). For example, we can use the default brms plotting
method to obtain a diagnostic plot of the individual fit of the nec4param model using:

R> brms_fit <- pull_brmsfit(fit)
R> plot(brms_fit)

which yields a plot of the posterior densities as well as trace plots of chains for each parameter
in the specified model (Figure 4).
Several helper functions have been included that allow the user to add or drop models from a
‘bayesmanecfit’ object, or change the model weighting method (amend()); extract a single
or subset of models from the ‘bayesmanecfit’ object (pull_out()); and examine the priors
used for model fitting (pull_prior(), sample_priors() and check_priors()).
The priors used in the default model fit can be extracted using pull_prior(), and a sample or
plot of prior values can be obtained from the individual brms model fits through the function
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Figure 4: Default brms plot of the nec3param model showing the posterior densities and
chain mixing for each of the included parameters.

sample_priors() which samples directly from the "prior" element in the ‘brmsfit’ object
(pull_brmsfit(fit) |> prior_summary() |> sample_priors(), see Figure 5).
We can also use the function check_priors() (based on the hypothesis() function of brms)
to assess how the posterior probability density for each parameter differs from that of the
prior. Here we show the prior and posterior probability densities for the parameters in the
nec3param model fit (check_priors(fit), see Figure 6). There is also a ‘bayesmanecfit’-
specific method that can be used to sequentially view all plots in a bnec() call with multiple
models, or write to a portable document format (PDF) file as in check_chains().

3.6. Model comparison

With bayesnec we have included a function (compare_posterior()) that allows bootstrapped
comparisons of posterior predictions. This function allows the user to fit several different
bnec() model fits and compare differences in their posterior predictions. Comparisons can
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Figure 5: Frequency histograms of samples of the default priors used by bayesnec for fitting
the nec3param model to the example data.

beta nec top

−10 0 10 1 2 3 0.25 0.50 0.75 1.00

0

20

40

60

0

5

10

15

20

0.0

2.5

5.0

7.5

10.0

Value

D
en

si
ty Type

Posterior

Prior

Figure 6: A comparison of the prior and posterior parameter probability densities for the
nec3param model fit to the example data.

be made across the model fits for individual threshold estimates (e.g., NEC, N(S)EC, NSEC
or ECx) or across a range of predictor values. Usage is demonstrated in the relevant vignette
at https://open-aims.github.io/bayesnec/articles/example4.html by comparing dif-
ferent types of models and model-sets using a single data set. However, the intent of this
function is to allow comparison across different data sets that might represent, for example,
different levels of a fixed factor covariate. For example, this function has been used to com-
pare toxicity of herbicides across three different climate scenarios, to examine the cumulative
impacts of pesticides and global warming on corals (Flores et al. 2021).
At this time bnec() does not allow for an inclusion of an interaction with a fixed factor.
Including an interaction term within each of the non-linear models implemented in bayesnec
is relatively straightforward, and may be introduced in future releases. However, in many
cases the functional form of the response may change with different levels of a given factor.
The substantial complexity of defining all possible non-linear model combinations at each
factor level means it unlikely this could be feasibly implemented in bayesnec in the short
term. In the meantime the greatest flexibility in the functional form of individual model fits
can be readily obtained using models fitted independently to data within each factor level.

https://open-aims.github.io/bayesnec/articles/example4.html
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3.7. Hierarchical effects
Most ecotoxicological and toxicology experiments include a range of grouping elements, such
as tanks, vials or batches of samples that contain multiple measurements that cannot be
considered strictly independent (also known as they are pseudo-replicates). To avoid criticism
around potential issues with pseudo-replication, it is often the practice for ecotoxicologists to
pool such observations and carry out modeling using, for example, the group mean. Where
the number of within group observations varies substantially across groups, this will have the
undesirable effect of equally weighting the group means even though some may be based on
far fewer observations than others. In addition, there are often instances of ecotoxicology
data from multiple experiments or other grouping factors within an experiment (such as
genotype) that cover the full range of the predictor variable that cannot be averaged prior
to modeling, resulting in the ecotoxicologist either ignoring the potential non-independence,
or fitting many independent data sets and subsequently needing to aggregate the threshold
estimates. Carrying out multiple fits on separate data sets is undesirable because each fit is
based on fewer data and will have greater uncertainty.
The current version of bayesnec harnesses the powerful modeling flexibility of brms for ac-
commodating hierarchical designs and other forms of non-independence. This is achieved by
allowing a list of grouping terms to be added to a ‘bayesnecformula’, which are then used to
generate the underlying ‘brmsformula’ for the brms internal call. Hierarchical effects can be
in the form of an offset, which effectively allows different mean response levels across groups,
and is achieved by specifying the ogl() (offset group-level) formula term. Hierarchical effects
can also be added to any or all of the (non-)linear parameters in the model by specifying the
pgl() (parameter group-level) formula term. Note that implementing hierarchical effects in
a non-linear modeling setting is non-trivial and considerable thought and testing should go
into selecting an appropriate hierarchical structure, and potentially suitable priors. Examples
of how to implement hierarchical effects in bayesnec can be found on the help file of function
bnf().

4. Existing alternatives
Package bayesnec is built upon the precursor R package jagsNEC (Fisher, Ricardo, and Fox
2020), which writes and fits CR models in JAGS (Plummer 2003). The bayesnec package was
then expanded to include several additional CR models and further generalized to allow a
large range of response variables to be modeled using their appropriate statistical distribution.
In addition, bayesnec allows the addition of hierarchical effects (see above). The simpler
syntax of brms allows bayesnec to be more easily expanded to include additional response
distributions as well as CR model formula. In addition, brms is well developed and comes
with a large range of supporting functions not available to the JAGS equivalents.
While there are some commercial propriety software packages to support the analysis of
toxicity data, such as GraphPad Prism (GraphPad Software 2024) and ToxCalc (Tidepool
Scientific, LLC 2022), these provide limited flexibility and most importantly do not support
fully reproducible analysis in an open-source environment. Ensuring that the raw data from
the experiment are available, and that the statistical code and documentation to reproduce
the analysis are also available are two major components to a reproducible study (Peng 2015).
The open-source flexible computing environment R provides an ideal platform for reproducible
analysis of toxicity data sets. The main existing tool in R that is widely used in ecotoxicology
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Figure 7: A comparison of the bayesnec and drc model fits and estimated NEC values for
the nec3param model, fit to data on maximum effective quantum yield (∆F/Fm′) of sym-
biotic dinoflagellates (in hospite) in Seriatopora hystrix exposed to elevated hexazinone and
tebuthiuron (range 0.3 to 1000 µg/L) for 10 h.

and toxicology is the frequentist-based package drc (Ritz et al. 2015). drc provides a suite of
flexible and versatile model fitting and after-fitting functions for the analysis of dose-response
data. The package includes a large range of built-in dose-reponse models that are parameter-
ized using a unified structure with a coefficient b denoting the steepness of the dose-response
curve (β = beta in bayesnec); c and d, the lower and upper asymptotic limits of the response
(τ = top and δ = bot in bayesnec); and, for some models, e, the effective dose ED50 (ω =
EC50 in bayesnec) (Ritz et al. 2015). Estimation in drc is based on the maximum likelihood
principle, which under the assumption of normally distributed response values simplifies to
non-linear least squares. The bayesnec package provides a Bayesian implementation of many
of the non-linear models offered by drc.
We compared the drc and bayesnec fits for the three parameter no-effect-concentration model
implemented in WinBugs by Fox (2010) (the nec3param model in bayesnec, see Section 2.1.2)
for two selected herbicides from the data from Jones and Kerswell (2003). The data com-
prise assays of herbicide phytotoxicity on chlorophyll fluorescence measurements (Fv/Fm)
of symbiotic dinoflagellates still in the host tissue of the coral. Full detail on this example
data set is provided in Section 5. In bayesnec this model is fit with the call bnec(fvfm ~
crf(log_x, model = "nec3param"), data = .x), and in drc using drm(fvfm ~ log_x,
fct = NEC.3(), data = .x). The herbicides hexazinone and tebuthiuron were selected
specifically for this comparison as visual inspection indicated they should provide a rea-
sonable fit to the Fox (2010) model as there was some evidence of a threshold effect. For
both herbicides, the predicted drc and bayesnec values were nearly identical using the default
behavior of each package (Figure 7).
While drc is an excellent tool for fitting CR models using frequentist methods and is widely
used (Ritz et al. 2015 is cited nearly 2,000 times), bayesnec provides a Bayesian alternative
using similarly simple syntax. The advantages of Bayesian methods in this setting are nu-
merous, and include direct characterization of parameter uncertainty and posterior predicted
samples that provide a valuable resource for model inference (such as comparisons of relative
toxicity, see Section 5 and Figure 11). In addition, we have observed that even the use of only
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weakly informative priors tends to improve the reliability of model fits compared to drc, and
this may be true of MLE estimation more generally (Krull 2020).

5. Illustrative example
So far we have demonstrated the basic usage of bayesnec and compared the results for a single
model fit to drc. Here we work through an illustrative example demonstrating the use of the
package for a data set on herbicide toxicity. The aim here is to indicate the usual workflow and
highlight the advantages of model averaging combined with Bayesian methods as a rigorous
means of estimating and comparing relative toxicity, and the associated uncertainty. The
data we analyse in this example are from Jones and Kerswell (2003).

5.1. Example case study

In our case study, the no-effect-toxicity values of a range of herbicides are first estimated
and then their relative toxicity is compared. The response data are the maximum effective
quantum yield (∆F/Fm′) of symbiotic dinoflagellates still in the host tissue of the coral Seri-
atopora hystrix (in hospite or in vivo). ∆F/Fm′ was calculated from Chlorophyll fluorescence
parameters measured using a DIVING-PAM chlorophyll fluorometer (Walz) as described in
more detail in Jones and Kerswell (2003) and Jones, Muller, Haynes, and Schreiber (2003).
The corals were exposed to elevated levels of eight different herbicides (Irgarol 1051, ametryn,
diuron, hexazinone, atrazine, simazine, tebuthiuron, ioxynil) at concentrations ranging from
0.3 to 1000 µg/L) for 10 h. Data for ioxynil were excluded from analysis here as this herbicide
did not show sufficient response at the maximum concentration.

5.2. Single herbicide analysis

We start by describing the analysis workflow for a single herbicide, ametryn. We first filter
ametryn from the larger herbicide data set. The concentration data are log transformed
prior to analysis to improve model stability and because this is the natural scaling of the
concentration series for these data. As there was little evidence of hormesis (an initial increase
in the response at low concentration) in these data (or in the other herbicides, see Section 5.3
below), we used only the decline model set as candidate models for the model averaging.
Setting model = "decline" results in bayesnec attempting to fit a set of 14 models, and
returning an object of class ‘bayesmancfit’.

R> ametryn <- herbicide |>
+ dplyr::mutate(concentration = log(concentration)) |>
+ dplyr::filter(herbicide == "ametryn")
R> manecfit_ametryn <- bayesnec::bnec(
+ fvfm ~ crf(concentration, model = "decline"), data = ametryn, seed = 17)

Other than selecting a model set to use, here we leave all other bnec() arguments as their
default. In this case bayesnec correctly chooses a beta distribution to use as the family,
defaults to the identity link, and drops the models “neclin” and “ecxlin” from the complete
list of “decline” models (as these are not appropriate for a zero bounded distribution, such
as the beta distribution, Section 2.1). Note that in this example (or in the one detailed in
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Section 5.3) we do not show all of the console output and messages generated by both the
bnec() and underlying brm functions, because across 14 models this results in substantial
output.
Following model fitting, the quality of the fits should be examined using check_chains, as
well as check_priors to ensure there is good chain mixing and that the default priors were
suitable. The results from these checks are omitted here for brevity, but can be easily saved
to PDF output for visual inspection and inclusion into any analysis supplementary material
by setting the argument filename to any non empty string, as in the code below:

R> check_chains(manecfit_ametryn, filename = "ametryn_check_chains")
R> check_priors(manecfit_ametryn, filename = "ametryn_check_priors")

We can also check the R̂ values of the fitted models using the rhat() function, based on the
method of Vehtari et al. (2021):

R> rhat(manecfit_ametryn)

Once we are satisfied with the model fits, we can examine the model statistics using summary:

R> summary(manecfit_ametryn)

Object of class bayesmanecfit

Family: beta
Links: mu = identity; phi = identity

Number of posterior draws per model: 8000

Model weights (Method: pseudobma_bb_weights):
waic wi

nec3param -450.89 0.02
nec4param -456.61 0.03
ecxexp -320.62 0.00
ecx4param -465.07 0.30
ecxwb1 -443.51 0.01
ecxwb2 -461.38 0.08
ecxwb1p3 -323.35 0.00
ecxwb2p3 -446.89 0.02
ecxll5 -464.40 0.23
ecxll4 -465.19 0.31
ecxll3 -431.80 0.00

Summary of weighted N(S)EC posterior estimates:
NB: Model set contains a combination of ECx and NEC

models, and is therefore a model averaged
combination of NEC and NSEC estimates.

Estimate Q2.5 Q97.5
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N(S)EC -1.60 -2.09 -0.47

Bayesian R2 estimates:
Estimate Est.Error Q2.5 Q97.5

nec3param 0.99 0.00 0.99 0.99
nec4param 0.99 0.00 0.99 0.99
ecxexp 0.89 0.01 0.87 0.91
ecx4param 0.99 0.00 0.99 0.99
ecxwb1 0.99 0.00 0.98 0.99
ecxwb2 0.99 0.00 0.99 0.99
ecxwb1p3 0.94 0.01 0.90 0.96
ecxwb2p3 0.99 0.00 0.99 0.99
ecxll5 0.99 0.00 0.99 0.99
ecxll4 0.99 0.00 0.99 0.99
ecxll3 0.99 0.00 0.98 0.99

For a ‘bayesmanecfit’ object with multiple model fits, summary first displays the class, the
family and links that have been used for the model fits, the number of posterior draws
contained within each model fit, and a table of the model weights for each model, show-
ing the Widely Applicable Information Criterion (waic, Watanabe and Opper 2010) from
loo and weights (wi) which are based by default on the "pseudobma" method (method =
"pseudobma") with Bayesian bootstrap (BB = TRUE) (see above), but this can be easily mod-
ified via argument loo_controls using amend. For the ametryn data set, weights are highest
for the ecx4param model, followed closely by the ecxll4 model, with some lesser support for
the ecxwb2 model, and a very small amount of support for the two nec models (nec3param
and nec4parm).
Because bayesnec was primarily developed for estimating no-effect-concentrations, an estimate
of the model averaged no-effect toxicity estimate is also provided. In this case the no-effect
toxicity estimate is reported as an N(S)EC value as the model set contains a combination of
"nec" and "ecx" models. In units of log concentration, the N(S)EC value for ametryn is -1.6,
which is equivalent to 0.202 µg/L. The 95% credible intervals are also provided, based on the
0.025 and 0.975 quantiles of the weighted pooled posterior sample.
Finally, Bayesian R2 estimates are also provided (Gelman, Goodrich, Gabry, and Vehtari
2019), as an indicator of overall model fit. This is useful because model weights are always
relative to the models actually included in the model set for the given data. The R2 provides
an indicator of model fit that can be compared objectively across data sets as an indication
of the quality of the fit of any of the supplied models to the data.
We can plot all the models contained within the ‘bayesmanecfit’ using the autoplot()
function, with argument all_models = TRUE (Figure 8):

R> ametryn_plot_all <- autoplot(manecfit_ametryn, all_models = TRUE)

We can also plot the model averaged fit that is used to derive the model averaged no-effect-
concentration for ametryn, as displayed in the summary (Figure 9):

R> ametryn_plot <- autoplot(manecfit_ametryn)
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Figure 8: Individual model fits to the ametryn data set, showing the estimated no effect
concentration for each. Data are the maximum effective quantum yield (∆F/Fm′) of symbi-
otic dinoflagellates (in hospite) in Seriatopora hystrix exposed to elevated ametryn (range 0.3
to 1000 µg/L) for 10 h. No-effect toxicity values presented are the median and 95% credible
intervals of the posterior estimates of the NEC parameter obtained for all nec models, and
the posterior predicted NSEC values estimated from all smooth ecx models.
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Figure 9: Full model averaged ‘bayesmanecfit’ to the ametryn data set, showing the es-
timated model-averaged no effect concentration. Data are the maximum effective quantum
yield (∆F/Fm′) of symbiotic dinoflagellates (in hospite) in Seriatopora hystrix exposed to
elevated ametryn (range 0.3 to 1000 µg/L) for 10 h. No-effect toxicity values presented are
model averaged posterior densities of the NEC parameter obtained from all fitted nec models,
and the NSEC values estimated from all smooth ecx models, summarized as a median and
95% credible intervals. Only the decline model set was used (i.e., hormesis models were
excluded).

5.3. Comparing toxicity across herbicides

Above we describe the workflow for a single herbicide. We now show how to use the same
workflow across all herbicides to generate full ‘bayesmanecfit’ model averaged fits and no-
effect-toxicity estimates, and use this to compare their relative toxicity.
We start by modeling the concentration-response curves for all seven photo toxicity data sets
using the bayesnec package via the following code:

R> manecfit <- herbicide |>
+ dplyr::mutate(concentration = log(concentration)) |>
+ split(f = ~ herbicide) |>
+ purrr::map(function(x) {
+ bayesnec::bnec(fvfm ~ crf(concentration, model = "decline"),
+ data = x, seed = 17)
+ })
R> save(manecfit, file = "manecfits.RData")

Because we want to run the analysis for all seven herbicides separately we first split the data,
then call the bnec() function for each herbicide using purrr (Henry and Wickham 2023).
We use the same settings and default arguments as for our single herbicide example above
(ametryn, see Section 5.2). Note that fitting a large set of models using Bayesian methods
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can take some time (see Section 7), and we recommend running the analysis at a convenient
time, and saving the resulting output to a .RData file to work with later.
Once we have our list of fitted ‘bayesmanecfit’ objects for each herbicide, we can use rhat
to check that all models fitted successfully for each, as well as check the chains and priors for
each fitted model, although we have skipped these steps here. It is also possible to simply
remove any models that fail the rhat criteria of <1.05 using the function amend(). Note
for the “decline” model set, there are no fits with poor rhat values for this example. If
there are models that fail to converge (have high rhat values for some parameters, divergent
transitions or issues identified with chain mixing) it may be possible to improve those fits by
re-running the model with a greater number of iterations, modified priors, or adjusting other
fitting options within brms such as adapt_delta. Unfortunately, at this time bnec() will
not support model averaging across models fitted using varying numbers of iterations, so to
improve the fit of a single model, all models in the set will need to be re-fit with the same
(higher) number of iterations. We recommend exploring the required changes using a single
‘bayesnecfit’ of any problematic models before re-running the complete ‘bayesmanecfit’
set.

R> cleaned_fits <- purrr::map(manecfit, function(x) {
+ bad_fits <- rhat(x)$failed
+ out_fit <- x
+ if (length(bad_fits) > 0) {
+ out_fit <- bayesnec::amend(x, drop = bad_fits)
+ }
+ out_fit
+ })

To facilitate comparison across the herbicides, we create a collated table of model weights
by extracting the "mod_stats" element from each herbicide’s ‘bayesmanecfit’, again using
purrr:

R> library("tidyr")
R> library("stringr")
R> modtab <- purrr::map_dfr(cleaned_fits, function(x) {
+ x$mod_stats |>
+ dplyr::select(model, wi) |>
+ dplyr::mutate(wi = round(wi, 3))
+ }, .id = "herbicide") |>
+ tidyr::pivot_wider(names_from = herbicide, values_from = wi) |>
+ data.frame()
R> colnames(modtab) <- stringr::str_to_title(colnames(modtab))

This collated table of model weights shows that the best fitting models vary substantially
across the CR curves for the seven herbicides (Table 1). Few herbicides showed any weight
for the nec threshold models, with the exception of ametryn which had some, albeit limited,
support. The weights for the various ecx models varied substantially, with at least some
support for more than one model in all cases. This shows clearly the value of the model aver-
aging approach adopted in bayesnec, which effectively accommodates this model uncertainty
by seamlessly providing weighted model averaged inferences.
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Model Ametryn Atrazine Diuron Hexazinone Irgarol Simazine Tebuthiuron
nec3param 0.021 0.000 0.000 0.000 0.001 0.000 0.018
nec4param 0.028 0.001 0.000 0.000 0.001 0.000 0.003
ecxexp 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ecx4param 0.296 0.142 0.251 0.113 0.255 0.175 0.001
ecxwb1 0.010 0.439 0.124 0.000 0.258 0.107 0.000
ecxwb2 0.082 0.001 0.001 0.016 0.028 0.018 0.165
ecxwb1p3 0.000 0.000 0.000 0.019 0.000 0.015 0.000
ecxwb2p3 0.017 0.001 0.001 0.057 0.001 0.053 0.502
ecxll5 0.232 0.289 0.311 0.022 0.189 0.156 0.310
ecxll4 0.314 0.127 0.224 0.115 0.268 0.175 0.001
ecxll3 0.000 0.000 0.088 0.658 0.000 0.301 0.000

Table 1: Fitted valid models and their relative pseudo-BMA weights for CR curves for the
effects of seven herbicides on maximum effective quantum yield (∆F/Fm′) of symbiotic di-
noflagellates of the coral Seriatopora hystrix.

We use the bayesnec autoplot, together with ggpubr (Kassambara 2023) to make a panel
plot of the weighted model averaged predicted curves for all seven herbicides (Figure 10).

R> library("ggpubr")
R> all_plots <- lapply(cleaned_fits, function(x) {
+ autoplot(x, xform = exp) +
+ scale_x_continuous(trans = "log", labels = round_digits) +
+ theme(axis.title.x = element_blank(),
+ axis.title.y = element_blank(),
+ strip.background = element_blank(),
+ strip.text.x = element_blank()) +
+ ggtitle("")
+ })
R> figure <- ggpubr::ggarrange(plotlist = all_plots, nrow = 4,
+ ncol = 2, labels = names(all_plots), align = "hv",
+ font.label = list(color = "black", size = 12, face = "plain"))

Across the seven herbicides, the ‘bayesmanecfit’ model averaged fits model the input data
very well, with predictions generally very confident (Figure 10). The slight uncertainty in the
appropriate model form for the ametryn data set is evident in the weighted average predicted
values as a broader confidence band at the estimated position of the NEC threshold point
(Figure 10). The N(S)EC values are model averaged posterior densities of the NEC parameter
obtained from all fitted nec models, and the NSEC values estimated from all smooth ecx
models. These values are the bayesnec estimates for the no-(significant)-effect concentration
required for the integration of this toxicity data into the relevant regulatory framework in
Australia, the Australian and New Zealand Water Quality Guidelines (ANZG 2018). While
the recommendation that NEC is the preferred toxicity estimate in this framework is well
established (Warne et al. 2015, 2018), use of the NSEC is recent (Fisher and Fox 2023)
and while yet to gain formal approval for use in the Australian setting presents a potential
alternative no-effect estimate for smooth curves.
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Figure 10: Full model averaged ‘bayesmanecfit’s to seven phototoxicity data sets, show-
ing estimated no effect concentrations. Data are the maximum effective quantum yield
(∆F/Fm′) of symbiotic dinoflagellates (in hospite) in Seriatopora hystrix exposed to ele-
vated Irgarol 1051, ametryn, diuron, hexazinone, atrazine, simazine, or tebuthiuron (range
0.3 to 1000 µg/L) for 10 h. N(S)EC values presented are model averaged posterior densities
of the NEC parameter obtained from all fitted nec models, and the NSEC values estimated
from all smooth ecx models, summarized as a median and 95% credible intervals. Only the
decline model set was used (i.e., hormesis models were excluded).

Finally, we also use the compare_posterior() function to extract and plot the weighted
averaged posterior samples for the N(S)EC toxicity values for all herbicides (Figure 11). This
shows clearly that irgarol, diuron and ametryn are the most toxic, and exhibit relatively
similar toxicity, with their posterior densities substantially overlapping (Figure 11). The
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Figure 11: Posterior distributions for N(S)EC toxicity estimates for the effect of seven her-
bicides on maximum effective quantum yield (∆F/Fm′) of symbiotic dinoflagellates of the
coral Seriatopora hystrix. Shown are medians with 80% uncertainty intervals.

Herbicide Atrazine Diuron Hexazinone Irgarol Simazine Tebuthiuron
Ametryn 0.019 0.866 0.054 0.940 0.012 0.011
Atrazine – 0.989 0.857 0.989 0.038 0.012
Diuron – – 0.015 0.717 0.012 0.011
Hexazinone – – – 0.986 0.0178 0.011
Irgarol – – – – 0.011 0.011
Simazine – – – – – 0.080

Table 2: Probability of no-difference in no-effect toxicity for seven herbicides. Values are
based on the proportional overlap in predicted posterior probability density of the N(S)EC
estimates.

herbicide tebuthiuron is the least toxic of these seven, followed by simazine, atrazine and
finally hexazinone, which exhibits intermediate toxicity (Figure 11). compare_posterior
also calculates the probability of difference in toxicity across the herbicides, which confirm
the visual results and can be used to infer significant differences in toxicity response (Table 2).

R> post_comp <- compare_posterior(cleaned_fits, comparison = "n(s)ec")
R> prob_diff <- post_comp$prob_diff |>
+ tidyr::separate(col = comparison, into = c("herbicide", "columns")) |>
+ tidyr::pivot_wider(names_from = columns, values_from = prob) |>
+ dplyr::mutate(across(where(is.numeric), ~round(.x, 3)))
R> colnames(prob_diff) <- stringr::str_to_sentence(colnames(prob_diff))
R> prob_diff$Herbicide <- stringr::str_to_sentence(prob_diff$Herbicide)
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6. Discussion
In order to be accessible to a broad community of varying statistical capabilities, we have
simplified fitting a bayesnec model as much as possible, whilst retaining the ability to modify
a wide range of arguments as necessary. Where possible we have tried to set default values to
align with those in brms. Wherever we deviate, this is generally towards being more conser-
vative and/or we have clearly explained our reasoning. Specific examples include: (1) iter,
which we increased from the brms default of 2,000 to 10,000 as we found that a higher number
of iterations are generally required for these non-linear models; and (2) the use of pointwise
= TRUE (where possible) and sample_prior = "yes" to avoid excessive crashes in the R pro-
gramming environment when used in the Windows operating system and allow the use of
the hypothesis() function respectively. We welcome constructive criticism of our selections
and users must expect that default settings may change accordingly in later releases. We
encourage users to modify these default values themselves whenever appropriate.
We have made considerable effort to ensure that bayesnec makes a sensible prediction for the
appropriate family, constructs appropriate weakly informative priors, and generates sensi-
ble initial values. However, this is a difficult task across such a broad range of non-linear
models, and across the potential range of ecotoxicological data that may be used. The user
must interrogate their model fits using the wide array of helper functions, and use their
own judgment regarding the appropriateness of model inferences for their own application.
Of particular importance are examination of model fit statistics through the summary() and
rhat() methods, visual inspection of all model fits in ‘bayesmanecfit’ objects (via plot(...,
all_models = TRUE) and check_chains(..., all_models = TRUE)) and an assessment of
the posterior versus prior probability densities to ensure default priors are appropriate (using
check_priors()).
The model averaging approach implemented in bayesnec is widely used in a range of set-
tings (in ecology for example, see Dormann et al. 2018, for a thorough review). However,
model averaging is relatively new to ecotoxicology (but see, for example, Shao and Gift 2014;
Thorley and Schwarz 2023; Fox et al. 2021; Wheeler and Bailer 2009). In bayesnec we have
implemented a broad range of potential models, and the default behavior is to fit them all (if
appropriate for the natural range of the response). More research is required to understand
how model-set selection influences model inference. While some studies suggest using a broad
range of models may be optimal (Wheeler and Bailer 2009), others indicate that including
multiple models of similar shape may overweight the representation of that shape in model
averaged predictions (Fox et al. 2021). In addition, it is important to understand that when
models are added or removed from the model-set, this can sometimes have a substantial in-
fluence on model predictions (potentially changing estimated ECx values, for example). As
the model-set in bayesnec may change with further package development it is important to
keep a record of the models that were actually fitted in a given analysis, in the event it is
necessary to reproduce a set of results.

6.1. Model suitability for NEC and ECx estimation
In principle all models provide an estimate for a “no-effect” toxicity concentration. As seen
above, for model strings with nec as a prefix, the NEC is directly estimated as parameter
η = NEC in the model, as per Fox (2010). On the other hand, model strings with ecx
as a prefix are continuous curve models with no threshold, typically used for extracting
ECx values from concentration-response data. In this instance, the no-effect toxicity value



32 bayesnec: CR Modeling and Estimation of Toxicity Metrics in R

reported is actually the No-Significant-Effect-Concentration (NSEC, see details in Fisher and
Fox 2023), defined as the concentration at which there is a user supplied certainty (based
on the Bayesian posterior estimate) that the response falls below the estimated value of the
upper asymptote (τ = top) of the response (i.e., the response value is significantly lower than
that expected in the case of no exposure). The default value for this NSEC proportion is
0.01, which corresponds to an alpha value (Type-I error rate) of 0.01 for a one-sided test of
significance. The NSEC concept has been recently explored using simulation studies and case
study examples, and when combined with the NEC estimates of threshold models within a
model- averaging approach, can yield robust estimates of N(S)EC and of their uncertainty
within a single analysis framework (Fisher et al. 2024b). Both NEC and NSEC can be
calculated from fitted models using the functions nec() and nsec(). The model averaged
N(S)EC is automatically returned as part of the fitted model for any ‘bayesmanecfit’ that
contains a combination of both "nec" and "ecx" models. The significance level used can be
adjusted from the default value of 0.01 using amend().
ECx estimates can be equally obtained from both "nec" and "ecx" models. ECx estimates
will usually be lower (more conservative) for "ecx" models fitted to the same data as "nec"
models. There is ambiguity in the definition of ECx estimates from hormesis models – these
allow an initial increase in the response (see Mattson 2008) and include models with the
string horme in their name – as well as those that have no natural lower bound on the scale
of the response (models with the string lin in their name, in the case of Gaussian response
data). For this reason, the ecx() function has arguments hormesis_def and type, both
character vectors indicating the desired behavior. For hormesis_def = "max", ECx values
are calculated as a decline from the maximum estimates (i.e., the peak at η = NEC); and
hormesis_def = "control" (the default) indicates that ECx values should be calculated
relative to the control, which is assumed to be the lowest observed concentration. For type =
"relative" ECx is calculated as the percentage decrease from the maximum predicted value
of the response (τ = top) to the minimum predicted value of the response (i.e., relative to
the observed data). For type = "absolute" (the default) ECx is calculated as the percentage
decrease from the maximum value of the response (τ = top) to 0. For type = "direct", a
direct interpolation of the response on the predictor is obtained.

6.2. Model suitability for response types

Models that have an exponential decay (most models with parameter β = beta) and lacking
the δ = bot parameter are 0-bounded and are not suitable for the Gaussian family, or any
family modeled using a "logit" or "log" link because they cannot generate predictions of
negative response values. Conversely, models with a linear decay (containing the string lin
in their name) are not suitable for modeling families that are 0-bounded (gamma, Poisson,
negative binomial, beta, binomial, beta-binomial) using an "identity" link. These restric-
tions do not need to be controlled by the user, as a call to bnec() with models = "all" in
the formula will simply exclude inappropriate models, albeit with a message.
Strictly speaking, models with a linear hormesis increase are not suitable for modeling re-
sponses that are 0, 1-bounded (binomial-, beta- and beta-binomial-distributed), however they
are currently allowed in bayesnec, with a reasonable fit achieved through a combination of
the appropriate distribution being applied to the response, and bayesnec’s make_inits()
function which ensures initial values passed to brms yield response values within the range of
the user-supplied response data.
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7. Computational considerations

7.1. Analytical reproducibility
Considerations of analytical reproducibility are particularly relevant to CR modeling, where
the model outcomes can often have far reaching management implications. It is challenging
to fit complex non-linear models in practice, particularly for non-Gaussian response variables.
As noted above, the Bayesian approach adopted in bayesnec using weakly informative priors
to develop appropriate initial values works reasonably well to produce relatively stable model
fits across a range of data sets. However, some models can fail and this can result in changes
in the model set, possibly leading to variation in the resulting multi-model inference.
To help with reproducibility bayesnec now allows a seed to be passed to brm and Stan. If
a seed is used in the bnec() call, it will also be used internally to generate initial values.
Although in R seeds are consistent across versions and operational systems, and therefore
the initial values will be the same across different users for a given seed, the underlying
Stan model fitting mechanism may yield slightly different parameter estimates for known
reasons relating to floating point operations (see Chapter 20 in Stan Development Team
2021). A potentially better strategy for ensuring reproducibility is to build a docker (https:
//docs.docker.com/get-docker/) container, an approach representing one strategy towards
overcoming the reproducibility crisis (Baker 2016). Also note that while setting a seed can
be useful to obtain consistent outputs it might be worth examining how robust the inference
is across different seeds.
Due to the fact that the underlying ‘brmsfit’ model fitted using cmdstanr does not retain
initial values as part of the returned model object, reproducibility may be reduced when using
cmdstanr.

7.2. Computational details
All computations in this paper were performed using rmarkdown (Allaire et al. 2024) with
R version 4.3.3 (2024-02-29), aarch64, darwin20, and the base packages (R Core Team 2024)
stats, graphics, grDevices, utils, datasets, methods, base along with and bayesnec (Fisher
et al. 2024a), brms (Bürkner 2017), ggplot2 (Wickham 2016), and Rcpp (Eddelbuettel et al.
2024).

7.3. Computation times
Bayesian analysis can take considerable time to run, and can also generate relatively large
data files that can require substantial computer power to work with the resulting output.
Here we provide a benchmark of the time taken to run the examples in this article. Run
times based using an 11th Gen Intel Core i9-11950H @ 2.60GHz with 33.5 Gb RAM were:

• 0.9 minutes for a simple single model fit to the example nec_data data set (Section 3.3);

• 11.8 minutes for the full decline model set fit to the herbicide ametryn in the example
herbicide data set (Section 5.2); and

• 84.2 minutes to fit the full decline model set to all seven herbicides in the example
herbicide data set (Section 5.3).

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
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When the same analysis was performed on an Apple M1 Max with 68.7 Gb RAM, run times
were:

• 0.2 minutes for a simple single model fit to the example nec_data data set (Section 3.3);

• 2.1 minutes for the full decline model set fit to the herbicide ametryn in the example
herbicide data set (Section 5.2); and

• 16 minutes to fit the full decline model set to all seven herbicides in the example
herbicide data set (Section 5.3).

These computing times can be substantially reduced by running the four chains in parallel,
by passing the argument cores = 4 via the bnec(...) call.

7.4. Data requirements

Due to the relatively long compute times of bayesnec fits, especially when multiple models
are fit at once, we recommend that when running bayesnec the resulting model fit is saved
as an .RData file to be read in and used in later workflows to examine model diagnostics,
plotting, parameter estimates and inference.
The data requirements for saving model fits can be relatively large. The single model fit
(Section 3.3) generates an object of 62.4 Mb; the full decline model set fit to the herbicide
ametryn (see Section 5.2) an object of 74.7 Mb; and the full decline model set to all seven
herbicides in the example data set (Section 5.3) an object of 522.9 Mb.

7.5. Dependencies

bayesnec has been built using brms (Bürkner 2017) as the main dependency which provides
an interface to fit Bayesian generalized (non-)linear multivariate multilevel models using Stan
program (Stan Development Team 2021), a C++ package for performing full Bayesian infer-
ence (https://mc-stan.org/).
brms can use two alternative interfaces to Stan, including rstan (Stan Development Team
2024) and cmdstanr (Gabry and Češnovar 2024) both of which require Rtools and the g++
compiler to be properly configured in R. Making sure brms is properly working on your ma-
chine is essential before any attempt to use the bayesnec package for analyses, as if this depen-
dency is not working, bayesnec will not work. Instructions for installing these two packages
can be found for cmdstanr (https://mc-stan.org/cmdstanr/articles/cmdstanr.html)
and rstan (https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started).

8. Future directions
The bayesnec package is a work in progress, and we welcome suggestions and feedback that will
improve the package performance and function. Our goal is to make bayesnec as user friendly
as possible, and capable of dealing with most real world CR modeling applications in the hope
that Bayesian statistics will become more widely used in applied risk assessment. Submit
bugs and feature requests through the package issues (https://github.com/open-AIMS/
bayesnec/issues) on GitHub. Some suggested future enhancements include:

https://mc-stan.org/
https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/open-AIMS/bayesnec/issues
https://github.com/open-AIMS/bayesnec/issues
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• The addition of other families to accommodate a broader range of response variables.
This could include a range of distributions already available in brms, such as the zero-
inflated Poisson or zero-truncated Gaussian. In addition, there are other useful distri-
butions currently unavailable in brms, such as the Tweedie distribution and ordered
beta model. Currently bayesnec implements adjustments away from 0 (gamma, beta)
or 1 (beta) as a strategy for allowing modeling with these types of data using the clos-
est most convenient statistical distribution. There are no readily available distributions
able to model data that includes 0 and 1 on the continuous scale in brms and bayesnec
currently does 0 and 1 adjustments followed by modeling using a beta distribution. The
ordered beta model has been suggested as a better method for modeling continuous data
with lower an upper bounds (see Kubinec et al. 2021) that could be readily implemented
in the brms customs families framework. For data that are 0 to ∞ on the continuous
scale the Tweedie distribution may prove a much better option than the current zero-
bounded gamma, and has been used extensively in fisheries research for biomass data
(Shono 2008). As this family is not currently available in brms this would also need
to be implemented as a custom family, which for the Tweedie is not trivial.

• A hypothesis method for testing against toxicity thresholds. The brms package includes
a hypothesis() function that allows for testing parameter estimates against specified
criteria. This is used in bayesnec in the check_prior() function, which is a wrapper
that examines the deviation of each parameter in the given model relative to 0 as
a means of generating posterior and prior probability density plots for comparison.
However, an additional wrapper function could be developed that allows toxicity to be
assessed, as measured through NEC, or ECx for example, against a required pre-defined
threshold. Such a feature may be useful where toxicity testing is used as a trigger in
risk management (for example, using whole-effluent-toxicity (WET) testing, Karman
and Smit 2019).
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