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There are cultwres in which people believe that some objects have
magical powers; anthropologists call these objects fetishes, In our
society, statistics are a sort of fetish. . Statistics direct our concern;
they show us what we ought to worry about and how much we
ought to worry, In a sense, the social problem becomes the stavistic
and, because we treat statistics as true and incontrovertible, they
achieve a kind of fetishlike, magical control vver how we view
social problems. We think of statistics as facts thar we discover,
not numbers we create, (Best 2001)

asm for the Bayesian paradigm in ecotoxicology may at first
seem contrary to the tenor of this article. However, the
apparent inconsistency evaporates when one appreciates that
expert opinion and the elicitation of subjective assessments
are hallmarks of the Bavesian approach. In a sense, the
Bayesian paradigm places the ecotoxicologist back in the
driver's seat, no longer consigned to be a mute, backseat
observer to some adaptation of Nevman-Pearson hypothesis
testing.

Much has been written on the role of statistics in
ecotoxicology, and there have been many good suggestions
for raising the bar with respect to data collection, processing,
and analysis, including Newman's recent pitch for an
increased emphasis on Bayesian statistical methods at an
undergraduate level (Newman 2008). Perhaps one of the
more comprehensive roadmaps for improving the quality of
statistics in ecotoxicology was provided by Chapman et al.
(1996),_which summarized the deliberations of an interna:




Statistics - Struggling for a ‘place in the sun’?
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The field of ecotoxicology includes concepts arising from:
disciplines such as toxicology

biology

analytical chemistry

environmental chemistry

organic chemistry



physiology
ecology, genetics
microbiology
biochemistry
immunology
molecular biology
soil sciences
water sciences

air sciences

economics




Statistics - The cornerstone of SSD Modelling

9% Species Sensitivity Distributions in Ecotoxicology

Suppose RVs X1 and X2 both take values x. We are interested in the probability of
X1 exceeding X2, that is, Pr(X1 > X2), or equivalently Pr(X1 — X2 > 0). Thus, we
consider a new RV: Z = X1 — X2 for the difference, taking values z, and require:
EXFy_x(0).

‘The analytical derivation of the probability of failure integrals closely follows
Papoulis (1965: p. 189, see his figure 7-2), Mood et al. (1974: pp. 185-186), or Hsu
(1997: p. 137). The difference of a pair of values x, and x, exceeds value z. if x, <
x, - 2. Consequently, we have to sum (integrate) the joint probability of x, and x,
over all values satisfying this inequality:

RN | RPN o [ AR
‘We now assume that the RVs of X1 and X2 are independent:
PDEy, (¥, %) = PDFy () PDF, (v,

that is, the joint probability density factorizes into the univariate PDFs.
It follows that

EXF,, ,,(z)= ‘[:PDFX‘( %) U;HPDFX:( t:)dx:}dxl

Species Sensitivity
Distributions
mn The required exceedence of Z= X1 — X2 at z = 0 equals

Ecotoxicology

- J" PDE,,(x)- CDF,, (x - 2)dx

Pr(X1> X2) = EXE,,_,(0)= j’i PDE,,(x)-CDE, (x)dx (.5)

An alternative expression for this exceedence can be derived as follows. Instead of
integrating PDFy, (x,.x,) over the region x, < x, - 2 for pairs of values x, and x,
given z, one could have done the double integration over the region x; > x, +

ExFX‘,Q(z):K[J‘; PDF,, n(t‘.xl)dx‘}dxl :J:EXFXI(X+:) PDF,, (x)dx

Edited by
Leo Posthuma The exceedence of Z = X1 — X2 at 0 equals:
Glenn W Suter IT
‘Theo . Traas
CRC Press Pr(X1> X2) = EXFy, ,(0) :J (1~ CDFy, (x))- PDF, (x)dx (5.6)

A Protocol Statistical Analaysis of Fathead Minow Larval Survival and Growth TestA
Protocol Statistical Analaysis of Fathead Minow Larval Survival and Growth Test

Source: Weber et al. (1989)



SURVIVAL

Survival Data
Proportion Surviving
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Outdated advice: Example #1 - Canadian

graph paper to fit a probit model!

Effect (probits)

Concentration (mglL)

guidance document shows how to use

Outdated advice: Example #2 - OECD guidance document 54 recommends trans-
forming data instead of using a more appropriate statistical modelling framweork.

4.3.3. Transformation of data

65. Many standard parametric methods (e.g. ANOVA, t-tests, linear regression analysis) assume
normally distributed data and homogenous variances. In practice, the data often deviate from these

assumptions, and if so, the inferences resulting from these standard methods may be disturbed. A variance-

stabilising transformation is often applied to the data, and then the statistical analysis is performed on the

transformed data. Examination of residual plots (plot of the residuals vs. the predicted values) and tests of
heterogeneity of variance (e.g., Levene, Bartlett, Hartley’s F-max, or Cochran’s Q) can help to identify
instances when the variances among the concentration groups are unequal. References on this topic include
Box and Cox (1964), Box and Hill (1974), Box and Tidwell (1962), Draper and Cox (1969).

68. If a transformation is used, it is also necessary to back-transform the means and confidence
intervals to the original scale, when reporting results. It is not correct to back-transform the standard errors.
It is important to understand that the back-transformed means differ from the arithmetic means of the
original data. These back-transformed means should be interpreted as estimates of the median of the
underlying data distribution, if the transformed data are normally (or at least symmetrically) distributed. In
the special case of a log-transformation, the back-transformed mean is the geometric mean of the original
data, and this value estimates the median of the underlying lognormal distribution.




The statistical grenade

Sometimes the ‘best’ advice may be: ill-conceived, wrong, intuitively appealing but statistically reckless



“Ban Statistical Significance”

2 Don’t Say “Statistically Significant”

The ASA Statement on P-Values and Statistical Significance stopped just short of recommending that

- declarations of “statistical significance” be abandoned. We take that step here. We conclude, based on our -
review of the articles in this special issue and the broader literature, that it is time to stop using the term

“statistically significant” entirely. Nor should variants such as “significantly different,” “p <0.05,” and

“nonsignificant” survive, whether expressed in words, by asterisks in a table, or in some other way.

SPECIAL ISSUE
ONP-VALUE

Statistical Inference in the 21st Century: A World Beyond 'p<0.05' is a special issue of

The American Statistician.
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Species Sensitivity Distribution estimation from
uncertain (QSAR-based) effects data

Tom Aldenberg 7, Emiel Rorije

Affiliations 4+ expand
PMID: 23614542 DOI: 10.1177/026119291304100105

Free article

Abstract

In environmental risk assessment, Species Sensitivity Distributions (SSDs) can be applied to
estimate a PNEC (Predicted No-Effect Concentration) for a chemical substance, when sufficient
data on species toxicities are available. The European Chemicals Agency (ECHA) recommendation

is 10 biological species. The question addressed in this paper, is whether QSAR-predicted toxicities
can be included in SSD based PNEC estimates, and whether any modifications need to be made to
account for the uncertainty in the QSAR-model estimates. This problem is addressed from a
probabilistic modelling point of view. From classical analysis of variation (ANOVA), we review how
the error-in-data SSD problem is similar to separation into between-group and within-group
variance. ECHA guidance suggests averaging similar endpoint data for a species, which is

consistent with group means, as in ANOVA. This-exercise reveals that error-in data.reduces the '
estimation of the between species variation, i.e. the:SSD-variance, rather than enlarging it. A
Bayesian analysis permits the assessment of the uncertainty of the SSD mean and variance o
parameters for given values of mean species toxicityOerror. This requires a hierarchical model.
Prototyping this model for an artificial five-species data set seems to suggest that the influence of
data error is relatively minor. Moreover, when neglecting this data error, a slightly conservative
estimate of the SSD results. Hence, we suggest including (model-predicted) data as model point
estimates and handling the SSD as usual. The Bayesian simulation of the error-in-data SSD leads to

D L T L T T S S T S T T L L T L



ATLA 43, 241-249, 2015 241

More Noise Does Not Mean More Precision: A Review of
Aldenberg and Rorije (2013)

David R. Fox1.2

TEnvironmetrics Australia, Melbourne, Australia; 2University of Melbourne, Melbourne, Australia

Summary — This paper provides a critical review of recently published work that suggests thatithe preci=
sion of hazardous concentration estimates from Species Sensitivity Distributions (SSDs) is improved when
the uncertainty in the input data is taken into account. Our review confirms that this counter-intuitive result
is indeed incorrect.

Key words: ANOVA, Bayesian predictive distribution, beta-content tolerance intervals, components of
variation, species sensitivity distributions, uncertainty estimation.

Address for correspondence: David R. Fox, PO Box 7117, Beaumaris, Victoria, Australia 3193.
E-mail: david.fox@environmetrics.net.au
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Assessment factors in species sensitivity distributions for
the derivation of guideline values for aquatic
contaminants
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Environmental context. The use of assessment factors applied to guideline values derived
using species sensitivity distributions adds an unnecessary level of conservatism. Using an
adequate toxicity dataset and applying the latest model-averaging software will yield values
of greatest reliability.

Abstract. The development of the Species Sensitivity Distribution (SSD) more than 30years ago
was in direct response to the many criticisms concerning the use of subjective Assessment (or
Application) Factors (AFs) in widespread use at the time. While not perfect, SSD modelling is
statistically defensible whereas AFs are not. While intuitively appealing, we believe recent
guidance recommendinge the use of AFs in coniunction with SSD modelline is concernine and




- or an opinion on a personal website
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Home / About ECx and NOEC

Download a preprint of my opinion paper on statistical approaches

Jager T (preprint). It's about time: moving away from statistical analysis of ecotoxicity data. Preprint version.

What is the traditional approach to ecotox data analysis?

The classical approaches to analyse ecotoxicity data are statistical (data-driven) in nature: z

®
* Hypothesis testing to find the highest concentration without significant effects, relative to the control, at the end of the test (e.g., yielding an NOEC)A“
* Curve fitting and interpolation to find the concentration associated with x% effect, relative to the control, at the end of the test (e.g., an ECx or LCx).

Note the wording "at the end of the test": these approaches only deal with the dose and not with time. These methods are extremely common in both regulatory and academic investigations, and feature in every
ecotoxicological textbook. They are so common that most ecotoxicologists are probably not even aware of their severe limitations:

These methods make poor use of the data as only the results at the end of the test are used.

If multiple endpoints are observed in a test (e.g., growth and reproduction), they are treated as independent and unrelated traits (which is biological nonsense).

The summary statistics depend on the duration of exposure. This is easily missed as exposure time is standardised in routine test protocols. How toxicity changes over time is depends on the chemica, on the
species, and on the test conditions (e.g., temperature). Furthermore, it depends on how the trait is expressed (e.g., using body size as length or as weight).

Because of the previous point, summary statistics cannot be compared between species and between chemicals. Every subsequent analysis that is done with these numbers (such as QSARs and SSDs) is

therefore also questionable. /
Since these methods are descriptive, they offer no insight into the mechanisms underlying the toxic response: we don'’t learn anything from them.
Since these methods are descriptive, they cannot be used to provide meaningful extrapolations to other conditions, e.g., different exposure patterns, different exposure durations, different environmental conditions.

—
The NOEC has a number of additional limitations that make it even more unatractive than the ECx: ’
L//\re,c,(Lgé\.c, £ef & \/5
i ue depends on test design.

The NOEC has to be one of the test concentra
We cannot generate a confidence interval on the
The NOEC is a fallacy against statistical principl
Because of the previous point, the NOEC bec

clusions from non-significant results. A lack of statistically significant effects does not mean no effect.
protective) with increasing variability in the observations. The actual level of effect at the NOEC can be quite high in standard toxicity tests.

14



Beware snake-oil merchants

GO0 G

- GUARANTEED TO CURE ==
@~ WHAT AILS YOU! =

This (non-statistical) expert testified in a NZ environment court. His statistical analysis was rubbish:

15



58.

EFSA (2023) recommends to always consider the 10% as the effect

level which is biologically relevant for all different parameters assessed

for birds.

Level of effect observed in the bobwhite quail long term study

The day 14 chick

bodyweight doe dose/response
relationship over the_three tested exposure concentrations ure 2).

Table 5: Alternative bird reproduction endpoints for risk assessment

Species level Endpoint Rational

Non-threatened species ED1po 91.7 mg ac’kg bw/d Biological relevance. <10%
LoCc=1 effects on chick body weight,

Threatened species ED10 91.7 mg ac’kg bw/d most sensitive parameter.
LOC=0.1
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term df sumsq meansq | statistic p.value
dose 1| 279.899 | 279.89897 | 4.008913 | 0.0504883
Residuals | 52 | 3630.597 | 69.81917 NA NA
@)
o _] _
N | - r
| |
o 1
q) ] - |
(n H ; |
C H 1
8 © - :
7p) ! I
q) ! —
S ] |
.
N
| | O
| |
4.8 10.6 13.7

No significant dose effect.

round(dose, 2)
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Fitted model plot.

Loading required package: MASS

'drc' has been loaded.
Please cite R and 'drc' if used for a publication,

for references type 'citation()' and 'citation('drc')'.

Attaching package: 'drc'

The following objects are masked from 'package:stats':

gaussian, getInitial

20



term | curve estimate std.error statistic p.value
b (Intercept) | -0.2070017 2.998112 | -0.0690440 | 0.9452300
C (Intercept) | -42.5452686 | 633.037977 | -0.0672081 | 0.9466841
d (Intercept) | 52.2791855 | 732.931765 | 0.0713289 | 0.9434206
e (Intercept) | 8.4725297 NaN NaN NaN
20 —
D 10 —
(- @)
o—
S 0-
0
o
_10 —
_20 —
I I
6 10
dose

Warning in sqrt(diag(varMat)): NaNs produced

21




Cannot reliably estimate 4 parameters from 3 replicated doses.

OECD Guidance document 54 - Revision process has commenced

34th SETAC Europe Annual Meeting | 05 - 09 May 2024 | Sevilla
Activities to revise the OECD Document No. 54

on statistical analysis of ecotoxicity data

Benjamin Daniels, Thomas Gréff, Pia Kotschik & Susanne Walter-Rohde

German Environment Agency (UBA), Dessau-Rof3lau, Germany

Background Objectives
® OECD No. 54 (2006) [1] i the most i istical ® Update of methods and statistical procedures
methods for data analysis from ecotoxicological studies O Fupth moe mestEl githee on Go citstn &
® More suitable statistical methods and test approaches are nowadays comparison of hypothesis tests and model fitting
available approaches

.
.

Some approaches described in OECD No. 54 are no longer considered as Create a close link to the update of the ISO/TS 20281 [2] to
state of the art ensure harmonized guidance

Draft an updated OECD Document No. 54

Support the revision process at OECD level

Choice and application of the statistical method has direct impact on all
OECD Test Guidelines

-> evaluation of the effects of regulated chemicals is directly affected!

Intended revision process

Step1: research Step 2: practical testing Step 3: expert network
systematic literature search ‘method evaluation /
(SCOPUS) simulation studies / — “(p;:w;:)k;r)op
Project " priority list for DL
) revision =
iviti yourideas and
suggestions!
= draft revised loghook for trackis
UBA Report: Revision Needs g gbook for tracking
of OECD TGs [3] Step 4: draft document OECD 54 document revisions
~Q3-205 | [
== |
= Sun e [ OFCD GEcbiger | | oRcowNT | L T
| OECD s of National o SRR [ Final Draft WNT approval
o | e e I A (ot | W o
activities on I—|
OECD / ISO : | | = 0 o | bt [ inal raft | ppovel | publicaionas |1
level j 1s0 T Il e nemagona i
2024 2027
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Examples for revision topics

References
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[2] 150, Intemational Organization for Standardization. 2006. Water quali
i i 10281:2006.

Guidance on statistical
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Interested in supporting the revision process?
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Contact:
Umweltbundesamt, Postfach 14 06, 06813 Dessau-Rof3lau

Dr. Benjamin Daniels,
benjamin.daniels@uba.de

Umwelt

Bundesamt

German Environment Agency
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Current approaches to C-R and SSD Modelling

Analysis type
Envil tal
C-R Modelling - Toxicity metrics - SSD Modelling -> nvlron.men i
Protection
Mode
o ANOVA + Dunnett's
Test
, « NOEC /LOEC « Simple (single) distribution-fitting
Oldschool |7 Dot model the o, crarement of « begs the question "which distribution?" Sv"h"e‘:'lf;:'e{iuo"nk:"c‘:’/"”

lstEan concema(iopn precision/uncertainty) « Application of Assessment Factor(s) AFs
and response
« R packages: + NEC (Frequentist and Comprehensive SSD modelling tools: « Quantifiable although

W i + ssdtools - R package dependent on a number

~drda i « shiny(ssdtools) - interactive, online | of critical assumptions

_ Bayesnec o Hon « SSDToolbox - USEPA software « Backed up by solid

‘Contemporary' | BNTD el (MATLAB) statistical analysis
and others (Standard errorsyconfidence | * MOSAIC- online (University Lyon) * Results are
« USEPA BMDS intervals; posterior o reproducable (for same
« RIVM PROAST distributions) Note: ssdtools and SSDToolbox utilise data, same set of
il distributions)

Example: Survival time of daphnids versus dinoseb concentration

Source: Chevre et al. (2009)
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dose | response
0.0013 12.865
0.0013 14.736
0.0006 58.245
0.0006 69.240
0.0040 78.127
0.0090 86.312
0.0060 94.501
0.0006 93.801
0.0009 | 101.988
0.0010 | 112.514
0.0130 | 110.169
0.0200 16.365
0.0200 28.060
0.0400 9.104
0.0600 59.855
0.1100 12.581
0.0900 64.520
0.1400 86.251
0.1600 | 101.679
0.1800 | 113.599
0.2200 2.704
0.2300 12.995
0.2100 14.405
0.2200 15.803
0.2200 20.481
0.2224 | ~ 46.446
0.2200 |“° 49.721
0.2200 52.762
0.2200 65.862
0.2200 75.219
0.2600 7.832
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Next - look at the frequency distribution of the dose variable

0.75-

'
0.6

'
0.9
dose

Note there are a number of concentrations having no replication. This presents no difficulties for fitting a C-R model
but is a problem for ANOVA and hence NOEC computation.
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Playing with the sliders we can visually fit a reasonable model. For example, b = 6.5
and e = 0.34. These would be reasonable starting values for formal model-fitting
using drc for example.Let’s try drc.

drc Modelling of dinoseb data

Model fitted: Log-logistic (ED50 as parameter) with lower limit at O (3 parms)
Parameter estimates:

Estimate Std. Error t-value p-value
b: (Intercept) 4.230796 2.134889 1.9817 0.05302 .
d: (Intercept) 63.820667 6.690872 9.5385 7.692e-13 *xx
e: (Intercept) 0.2731564 0.033564 8.1382 1.018e-10 **x

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.0 '.' 0.1 ' ' 1

Residual standard error:

28.56357 (50 degrees of freedom)

28
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dose

Note, drc always plots on a logarithmic scale. Let’s look at a plot on a linear dose scale.
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Assess Model fit

ModelDf RSS | Df| F value| p value
ANOVA 20 | 8910.78 | NA NA NA
DRC model 50 | 40793.87 | 30 | 2.385357 | 0.023065
Dose-Response Model on Linear Scale
90
g
30
0 = —

0.0

0.3

Dose (linear scale)
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Residuals of Dose—Response Model

60 °
% .
? °
30 '. o °
1) ° ! o
Cg °
°
'g 0 ° ; ° o® s ® ° ° ¢
o ' b °
°
o0 °
° .8
-30 (]
° °
°
s .
°
-60
0.0 0.3 0.6 0.9

Dose

The residual plot reveals a serious issue - that of heteroscedacisity - in otherwords, non-constant variance. This is a
severe violation of a key assumption.Dealing with it is unfortunately not straightforward due to the non-linear link
function relating response and dose.We can use other packages for fitting non-linear, weighted regression models.

library(nlstools)

library(broom)

library(ggtext)

# Starting values for the 3-parameter log-logistic model
start values <- list(d = 64, b = 6.5, e = 0.34)

31



# Fit the model using nls() with a 3-parameter log-logistic form
11.1 <- nls(response ~ d / (1 + exp(b * (log(dose) - log(e)))),
data = df, start = start_values)

# Use fitted values to determine weights
fvl <- predict(1l.1)

11.2 <- nls(response ~ d / (1 + exp(b * (log(dose) - log(e)))),
data = df, start = start_values, weights = 1 / fvl)

# Add fitted values to the data frame for plotting
tmp<-data.frame(dose=rep(df$dose,2) ,response=rep(df$response,2) ,pred=c(predict(11l.1),predict(11.2)),
model=rep(c("unweighted","weighted") ,each=53))

# Plot observed data and fitted model
ggplot (tmp, aes(x = dose, y = response)) +

geom_point(color = "red") + # Original data points

geom_line(aes(y = pred, color = model),linewidth=1) + # Fitted model line

labs(x = "Dose", y = "Response") +

annotate("text",label="Note: Not much difference in fitted model, \nbut there is a difference in SEs of parameter
x=0.8,y=90)
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Comparison of parameter estimates

Parameter estimates for Model 1
Attaching package: 'dplyr'
The following object is masked from 'package:MASS':

select

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':
intersect, setdiff, setequal, union

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

group_rows

Parameter estimates for Model 2
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term | estimate | std.error | statistic | p.value
d 63.8205 6.8651 | 9.2964 | 0.0000
b 4.2309 2.3618 | 1.7914 | 0.0793
e 0.2732 0.0324 | 8.4195 | 0.0000
term | estimate | std.error | statistic | p.value
d 64.6201 8.1635 | 7.9157 | 0.0000
b 3.2470 0.6866 | 4.7288 | 0.0000
e 0.2736 0.0368 | 7.4380 | 0.0000

Selecting a Model

drc has many model-fitting options:

Toxicity metrics estimated from a C-R Model

NOEC -
free zone

« NOEC
« FECx
e LCx
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. NEC
« NSEC (New!)
« BMD

Toxicity metrics

280 Integr Environ Assess Manag 20, 2024—FISHER et AL.

TABLE 1 Toxicity estimates currently used for estimating no and low-effects for using in SSD modeling

Toxicity estimate Definition Statistical method
NSEC No significant effect concentration—the concentration at which Interpolation from a CR model (Fisher
the modeled mean response is statistically indistinguishable & Fox, 2023)

from the mean control response

NEC No effect concentration—the minimum concentration above Parameter estimate of a CR threshold
which an effect is predicted to occur model (Fox, 2010; Pires et al., 2002;
Van Der Hoeven, 1997)

NOEC No observable effect concentration—the highest tested Dunnett's test (based on ANOVA)
concentration at which the mean response is statistically
indistinguishable from the mean control response

ECx/ICX/LCx x% effect/inhibition/lethal concentration—the concentration that Interpolation from a CR model
is expected to cause a specified effect in x% of a group of
organisms or x% effect (ECx); an x% reduction in a nonquantal
measurement such as fecundity or growth (ICx); or be lethal to
x% of a group of organisms (LCx)

Note: Definitions are adapted from Warne et al. (2015), with the exception of NSEC, which is described in Fisher and Fox (2023). Abbreviations: CR,
concentration-response; SSD, species sensitivity distribution.
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Benchmark Dose (BMD)

BMDL, = dose below which the change in response is likely to be smaller than x%.
where the term ‘likely’ is defined by the statistical credible level, usually 95%-level.

1) Fitted reponse — mll- N -I - - .

2) Benchmark reponse (BMR)

—> N #
2 \ :
& \ §

\ .

\
N
~
HH -~ - -
0 0.1 1 10

4) Lower 95% of 90% cred. int. of BMD (BMDL) 1 Dase
3) Benchmark dose (BMD) 1
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Figure 1: Key concepts for the BMD approach. The observed mean responses plus or minus the
observed standard deviation are plotted as vertical lines. The dashed curve i a fitted dose-
response model, either one of the 16 individual dose-response models (see Section 2.5.1)
or the averaged model. This curve determines the point estimate of the BMD, which i
generally defined as a dose that corresponds to @ low but biologically relevant® change in
response, denoted the benchmark response (BMR). The density shows the posterior
distribution of the BMD and the green line at the bottom of the density indicates the
boundaries of the two-sided 90% credible interval of the BMD (defined by the 5% left and
right tail probabilities of that posterior distribution). The BMDL is the 95% one-sided lower
bound of the 90% credible interval for the BMD. Likewise, the BMDU is the 95% one-sided
upper bound of the 90% credible interval for the BMD. It should be noted that the
estimated background response (the median response of the control group) does not
necessarily coincide with the observed background response. The BMR is defined as a
change with regard to the background response predicted by the fitted model

EFSA on-line BMD app
https://efsa.openanalytics.cu/
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https://efsa.openanalytics.eu/

wEPA EPA's BMD Technical Guidance

* Final version of the EPA's Benchmark Dose
Technical Guidance document was published
in 2012: https://www.epa.gov/risk/benchmark-
dose-technical-guidance

» Other guidance documents relevant to BMD
modeling available at:
http://epa.gov/iris/backgrd.html

» EPA’s Statistical Working Group periodically
updates recommended model practices
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YEPA \\Tradltlonal Dichotomous Models
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Model Name Functional Form # of Parameters

2 The stand-alone Linear model in BMDS is equal to a first-order polynomial model
® Nested family of 4 related models described by Slob (2002) and included in the PROAST software of RIVM
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The No Significant Effect Concentration (NSEC)

Toxicology and Ch lume 42, Number 9—pp. 2019-2028, 2023
Received: 24 January 2023 | Revised: 23 February 2023 | Accepted: 13 March 2023 2019

Hazard/Risk Assessment

Introducing the No-Significant-Effect Concentration

Rebecca Fisher*** and David R. Fox**

*Austalian Insttute of Marine Science, Crawley, Wester Australis, Austalia

“Oceans Institute, Universty of Westem Australa, Crawley, Westem Australia, Australia
“Environmetics Australia, Beaumaris, Victora, Austalia

“Department of Infrastucture Engineering, Universty of Melboume, Parklle, Victoria, Ausralia

Abstract: The no-effect concentration (NEC) is the preferred threshold metric for single species toxicity tests applied to
d { in foruse in spy However,
the NEC is only suitable when concentration-response (C-R) data exhibit a threshold response. We describe an altemative
toxicity estimate, the no-significant-effect concentration (NSEC), which is better suited to C-R data for which the response is a
monotonically decreasing function of concentration and no threshold effects are evident. We use a flexible, three-parameter
sigmoidal function to describe the C-R relationship and detail both Bayesian and frequentist approaches to estimation and
inference for the NSEC. While the NSEC is conceptually linked to the traditional no-observed-effect concentration (NOEC), it
is a substantial improvement over the NOEC because it decouples the estimate from being directly dependent on the
placement of treatment concentrations as well as admitting statements of precision of the resulting toxicity estimate. Environ
Toxicol Chem 2023;42:2019-2028. © 2023 Commonwealth of Australia and The Authors. Environmental Toxicology and
Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Keywords: Species sensitivity distribution; no-observed-effect (NOECs); Cx sponse modeling;
Ecosystem protection; Ecotoxicology; Toxicity estimate
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NSEC Explained
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FIGURE 3: Fish growth data (solid circles). Red curve is estimated mean response function given by Equation 4. Blue lines denote limits of 90%
confidence interval for mean response; 90% prediction band is represented by the shaded region. Horizontal dashed line is at the lower limit of the
fi interval for ion =0, and vertical dashed line is at the corresponding concentration.
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Relationship between the NSEC and BMD

Q F'S
A
&
L'%ooo(— —yr “.se’[&‘]g ’f(«?s L.l fepless it
ok Lo ~ Laction | Lecreaso
—b‘ 'r"d'ﬂ(ﬂ_@k D‘E "b‘__Qg-(a)
A ¥ Conan

0 e

LMD = Mo

_[:C AR = -ba(SE(é‘L> X@,\ JSEC = TS |
a

Bor ?3::\"9 o dedoon o Yo Qorpec ek /Cf [4.\.;5@“
T e v San\‘mﬁ Adebdbon & gfj’\\b

%‘/:\D witll s < b)gLEc:

44



Computing the NSEC
R Package nsecR can be installed from github by typing:

remotes: :install github("environmetrics/nsecR")"

in your R / Rstudio console.

nsec {nsecR} R Documentation

NSEC - The No Significant Effect Concentration
Description

This function computes a No Significant Effect Concentration (NSEC) from a C-R model fitted using the drc package. Optionally, the user
‘may specify additional drc-type model structures to the nsec fonction which are then used to construct a model-averaged NSEC (maNSEC),

Usage

nsec(fit,mods, control.conc=2, sig=2.05

Arguments
fi
the fitted model object from function drm in package drc
mods
a st of alternative models for computing a maNSEC. These must be 4 model from the drc packag:
egLL30
control.conc

the concentration which s regarded as the 'control". Defaults to zero if not specified.

the signicance level (one-sided), Defaults to 0.05 if not specified.

nsecR Example

library(nsecR)
library(drc)
library(dplyr)
library(kableExtra)
library(broom)
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# First, fit a model(s) to your data
df<-read.csv(file="CHEVRE - EFFECTS OF DINOSEB ON DAPHNIA.DAT.csv")
11 .mod<-drm(response ~ dose, fct = LL.3(),data=df)

summary (11 .mod)

Model fitted: Log-logistic (ED50 as parameter) with lower limit at O (3 parms)
Parameter estimates:

Estimate Std. Error t-value p-value
b: (Intercept) 4.230796 2.134889 1.9817 0.05302 .
d: (Intercept) 63.820667 6.690872 9.5385 7.692e-13 *x*x
e: (Intercept) 0.273154 0.033564 8.1382 1.018e-10 *x*x*

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error:

28.56357 (50 degrees of freedom)
modelFit (11.mod)

Lack-of-fit test

ModelDf RSS Df F value p value
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ANQOVA 20 8911
DRC model 50 40794 30 2.3854 0.0231

nsecR Example
Next compute the NSEC:

ED52.6074008067397 Weight
LL.3 0.1895549 0.5
LL.3 0.1895549 0.5

[1] 0.1895549

100 0 ©
80 — o)

60 — @)
40 —
20 — ©
0

response

I I I
5e-04 0.001 0.01

dose
Now, NSEC = 0.1896 and from this part of the output ED52.6074... we see that at dose=0.1896 the response
is 52.6074. We also see that the response intercept (d) is at 63.8207. Thus, 52.6074 represents a 17.67%

{: 1-— ggzg%‘; = 0.1757} ‘effect’. Comapre this to the ‘equivalent’” BMD output:
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logl0-response

1.5 2.0

1.0

0.5

0.0

-0.5

term estimate
b 4.2307958
d 63.8206673
e 0.2731545
Expon. m5- Hill m5-
version: 70.0 version: 70.0
loglik -73.16 2 Aé AAA loglik -73.08
AIC 156.32 A A PV AIC 156.16
var- 0.9256 4 var- 0.9229
a- 49.88 0 a- 48.89
| CED- 0.1408 | = CED- 0.1595 |
c- 0.01509 ) c- 0.01056
d- 2.258 ‘é’ ° d- 2.829
CES _-0.176 o o CES _-0.176
CEDL 0.0217 % CEDL 0.0268
CEDU 0.309 @ CEDU 0.257
b: 0.5444 ! 0 b: 0.4796
o o
conv: 1 — conv: 1
scaling factoron x: 1 g scaling factoron x: 1
dtype: 1 = o dtype: 1
o
ol
Q

log10-dose

log10-dose
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Model-averaged nsecR (maNSEC) Example

Having fitted a single model and computing the NSEC, it’s trivial to compute a model-averaged NSEC (maNSEC) by
including additional models.Possible models are those available in the drc package, namely:

Let’s try a maNSEC by adding the following models:
LL.4
W1.3
W1.4
LN.3

LN.4

nsec(ll.mod, mods = 1list(LL.4(), W1.3(), W1.4Q),
LN.3(0), LN.40))

Model-averaged NSEC = 0.1899

From individual to population - The Species Sensitivity Distribution (SSD)

o What is an SSD? It’s simply a theoretical probability model (a cumulative distribution function or cdf) fitted
to a (usually) small collection of toxicity metrics for a particular chemical in a particular environment - for
example copper in a freshwater environment.

« Putting aside the current debate about TKTD models versus SSD models (and statistical science more generally),
the SSD is remains one of the most credible and scientifically defensible means of establishing default guideline
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fct description

LL.2 Log-logistic (ED50 as parameter) with lower limit at 0 and upper limit at 1

( )
LL.3 Log-logistic (ED50 as parameter) with lower limit at 0
LL.3u | Log-logistic (ED50 as parameter) with upper limit at 1

LL.4 Log-logistic (ED50 as parameter)

LL.5 Generalized log-logistic (ED50 as parameter)

W1.2 | Weibull (type 1) with lower limit at 0 and upper limit at 1

W1.3 | Weibull (type 1) with lower limit at 0

(

W1.4 | Weibull (type 1
(
(

W2.3 | Weibull (type 2) with lower limit at 0

)
)
W2.2 Weibull (type 2) with lower limit at 0 and upper limit at 1
)
)

W2.4 | Weibull (type 2

BC.4 | Brain-Cousens (hormesis) with lower limit fixed at 0

BC.5 | Brain-Cousens (hormesis)

LL2.2 | Log-logistic (log(ED50) as parameter) with lower limit at 0 and upper limit at 1

)
LL2.3 | Log-logistic (log(ED50) as parameter) with lower limit at 0
LL2.3u | Log-logistic (log(ED50) as parameter) with upper limit at 1

LL2.4 | Log-logistic (log(ED50) as parameter)

LL2.5 | Generalised log-logistic (log(ED50) as parameter)

AR.2 | Asymptotic regression with lower limit at 0

AR.3 | Shifted asymptotic regression

MM.2 | Michaelis-Menten

MM.3 | Shifted Michaelis-Menten
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NSEC | Weight
LL.4 | 0.1904 | 0.0925
W1.3 | 0.1846 | 0.2056
W14 | 0.1885 | 0.0879
LN.3 | 0.1925 | 0.2596
LN.4 | 0.1957 | 0.1053

values or DGVs for toxicants in the environment.

o Although SSD modelling is very mature (>30 years old) there has been a renewed research push with some
important advances having being recently made.

o The motivation for SSD modelling was to put DGV determination on a more rational/objective footing. It
displaced the previous method of using subjective Assessment Factors.

o Yet we still have jurisdictions around the world recommending AFs be applied to DGVs derived fom an SSD!!
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The minimum sample size (number of data). This issue is subject to an ongoing debate. While OECD, 2007
proposes a minimum of eight NOECs on species from different taxonomic groups, EC, 2003a recommends
10 NOECs (and preferably more than 15) on species from eight taxonomic groups. Similar proposals have
been made by Gibbons and Coleman, 2001 and de Bruijn e 2/, 1999.

How multiple data for one species are dealt with, e.g. averaging comparable data, or selecting the most
sensitive endpoint when various data are available. / Q {.ngu c G-v-f:e'ﬁe on A &S (I‘?‘fgb
e

Statistical fitting procedures. That is, the method mus mentioned and explained, where the log-normal
distribution is the preferred one for pragmatic reasons. In addition, a statistical method is to be used to test
the goodness of fit. In addition to the Kolmogorov-Smirnov test, the Anderson—Darling goodness of fit test
can be used as a criterion for the choice of a parametric distribution for data-rich data sets, because it gives
more weight to the tails of the distribution. Results should be discussed in regard to the graphical
representation of the species distribution. If the data do not fit any distribution, the left tail of the
distribution (the lowest effect concentrations) should be analysed more carefully. Any choice of a specitic
distribution function should be clearly explained.

Estimated parameter. That is, the concentration corresponding with the point in the species sensitivity C
distribution (SSD) profile below which 5% of the species occur may be derived with a 50% confidence a
interval associated with this concentration, as an intermediate value in the determination of the PNEC. gaf_-«fm

Estimation of the PNEC. That is, the intermediate value may be divided by an appropriate assessment
factor, if needed, to reflect the further uncertainties identified. If mesocosm studies are available, they
should also be evaluated to decide on the assessment factor.

Deviations from these recommendations can be made on a case-by-case basis, through consideration of sensitive
endpoints, sensitive species, mode of toxic action and/or knowledge from structure activity considerations.

The PNEC should also be derived by applying the assessment factor approach on the same database.

Figure 1: DEWHA, Commonwealth of Australia (2009)
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Recent Developments in Species Sensitivity Distribution
Modeling

D.R. Fox,*®* RA. van Dam,* R. Fisher,? G.E. Batley,” AR. Tillmanns,' J. Thorley,? C.J. Schwarz,” D.J. Spry,' and K. McTavish'
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WOachico, Adolad, South Austraka, Ausiraka

Marin Wast d School of Plant Biokogy, Crawley, Wostorn Australi, Austraia
“CSIRO Land and W, Lucas Heights, New South Walos, Austrlia
Ministry of Stratogy, Victoria, . Canada

Abstract: The species sensitvity distribution (SSD) s a statistical approach that is used to estimate either the concentration
f ical that X% or of lly affected
by a given concentration of a chemical. Despite a significant body of published research and critical reviews over the past
20yr aimed at improving the methodology, the fundamentals remain unchanged. Although there have been some recent
suggestions for improvements to SSD methods in the lterature, in general, fow of these suggestions have been formally
adopted. . critics of the approach can rightly point to in technical i
lead to marked differences in results, theroby undermining confidence in SSD approaches. Despite the limitations, SSDs
remain a practical tool and, until a demonstrably better inferential framework is available, developments and enhance-
ments to conventional SSD practice will and should continue. We therefore believe the time has come for the scientific
community to decide how it wants SSD methods to evolve. The present study summarizes the current status of, and
elaborates on several recent developments for, SSD methods, specifically, model averaging, multimodality, and software
development. We also consider future directions with respect to the use of SSDs, with the ultimate aim of helping to
facilitate greater international collaboration and, potentially, greater harmonization of SSD methods. Environ Toxicol
Chem 2021;40:293-308. © 2020 SETAC

Keywords: Species sensitiity distrbution; Statistical inference; Hazardous concentration; Computer software
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S ervionerics

Final report of the joint i igation into SSD
and ssdtools implementation for the derivation of toxicant
guidelines values in Australia and New Zealand

19 April 2024

ssdtools V2.1

shinyssdtools is (IMHO) the most advanced SSD modelling tool currently available. There are others - for example
MOSAIC (Sandrine Charles’ group at the University of Lyon) and ssdtoolbox (a MALAB executable from Matt
Emerson at USEPA), but neither can match the full suite of modelling tools available in ssdtools. ssdtools is an
R package available from CRAN and there is a companion, interacive on-line version called shiny(ssdtools).
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shiny(ssdtools)

Launch Report Card

» increased awareness of the role and relevancy of statistical methods

 (gradually) increasing uptake of R

» recent multi- agency, cross-jurisdictional R&D efforts => increased harmonisation of approaches
o development of interactive on-line tools

« increased participation of statisticians/quantitative biologists/R-programmers

e jurisdictions that are committed to re-writing statistical guidance

o NOECs - the ecotoxicological ‘cockroach’

o AFs - Always Fraught

o End the ‘Quixotic Quest’

e ‘Friendly Fire’ and debates in inappropriate fora
o Jurisdictional ‘silos’
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o Inertia

Challenges and Opportunities

o Addressing and compensating for small, biased samples in SSD and HCx estimation;

o Development of statistical methods to validate predictions from TKTD models and SSD-based approaches;

« How to design a C-R experiment that maximizes information content for minimum cost / maximum precision;

o How, or establish if it’s possible to set an HCx for a mixture of chemicals;

o How to seamlessly integrate the temporal dimension into SSD modelling and HCx estimation rather than
marginalising it;

» Strategies for error propagation to incorporate uncertainties arising from data collection process, imprecise
model specification, and statistical treatment of data;

e Refinement of modelling capabilities to undertake external and internal exposure assessments;

« Elicitation of ‘expert’ opinion in the setting of Bayesian priors and protocols for reaching consensus when used
these are used in a regulatory context.

Thank you for listening!
A pdf copy of this presentation is available at:

https://environmetrics.net/resources/documents-and-reports/
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