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1 Introduction

Ecotoxicological risk assessment relies heavily on toxicity thresholds derived from controlled experiments.
These thresholds provide the basis for the establishment of environmental quality guidelines and for regula-
tory decision-making. While not wishing to revisit the long debates and controversy surrounding the use of
flawed toxicity metrics like the NOEC and LOEC, it suffices to say that the last 20 years has witnessed a
growing awareness and acceptance of the superiority of statistical approaches which model the relationship
between response and dose rather than ignoring it - as is done in ANOVA-based methods.

The regression approach has the advantage of providing quantitative links between chemical exposure and
biological effects and as noted by Fox and Landis (2016) even in datasets deemed “problematic,” regression
models offer a richer, more robust framework for the estimation of point and interval toxicity thresholds than
ANOVA-based methods (Fox & Landis, 2016). This, however is not a shared view with others arguing there
are real-world scenarios where hypothesis-testing metrics like the NOEC are suitable and even preferable
(Green et al., 2013).

A variety of statistical modelling methods is available and, collectively these fall under the umbrella Dose–
response (D-R) modelling. Responses are typically sigmoidal and can be well-described mathematically
by the logistic, log–logistic, Weibull, or Hill equations, enabling estimation of a variety of metrics (Hendriks
et al., 2013; Ritz, 2010). Some of the more common of these are discussed in the next section.

2 Common toxicity metrics used in ecotoxicology

2.1 Categorical versus Ratio metrics

Toxicity metrics can be classified as having been derived using one of two common statistical methods -
Regression or ANOVA / T-tests. While both techniques are variants of what statisticians refer to as
the general linear model or 𝐺𝐿𝑀 (as distinct from generalised linear models), their treatment of the dose
variable is decidedly different. Regression-based methods (as used in dose-response modelling) treat dose
as a ratio variable whereas ANOVA-based methods treat dose as a categorical variable (also referred to
as a ‘factor’ in R). To distinguish these two estimation paradigms we will denote 𝑅 − 𝑡𝑦𝑝𝑒 and 𝐶 − 𝑡𝑦𝑝𝑒
for regression and categorical methods respectively. Apart from other advantages to be discussed, 𝑅 − 𝑡𝑦𝑝𝑒
methods are infinitely flexible whereas 𝐶 − 𝑡𝑦𝑝𝑒 methods are limited to a small number of rigid procedures
such as Dunnett’s test (Dunnett, 1955), Jonckheere–Terpstra test (Jonckheere, 1954; Terpstra, 1952), or
Williams test (Williams, 1971).

𝑅 − 𝑡𝑦𝑝𝑒 estimates use model-based estimation that accounts for the entire dose–response curve. In this
way, it is possible to incorporate both statistical significance and biological significance. These methods
are statistically robust and have been widely adopted in regulatory practice. Nonetheless, quantification of
biological significance is generally more difficult than the specification of statistical significance. Further-
more, calculation of the lower confidence bound for an 𝑅 − 𝑡𝑦𝑝𝑒 metric usually relies on either numerical
approximations (e.g. the delta-method) or computer simulation (e.g.bootstrapping). The results are also
sensitive to the form of the model and to data sparsity near the target response level.
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2.2 Formal Definitions

𝑅 − 𝑡𝑦𝑝𝑒 metrics

• LC𝑥 (Lethal Concentration, 𝑥%)
The concentration of a substance that is lethal to 𝑥% of test organisms over a specified exposure
period. The LC50 (median lethal concentration) remains the most widely reported lethal toxicity
endpoint (Hendriks et al., 2013).

• EC𝑥 (Effect Concentration, 𝑥%)
The concentration that results in an 𝑥% ‘effect’ (usually defined with reference to a zero or control
dose, but not necessarily).

Low-effect levels such as EC10 or EC20 are recommended for regulatory use because they are thought
to be biologically meaningful yet precautionary. Derived from regression models, EC𝑥 values utilise
the full concentration–response curve (Ritz, 2010).

• NEC (No-Effect Concentration)
A model-derived threshold parameter representing the concentration below which no effect is predicted.
The NEC is estimated as a parameter of a dose–response mode - often via maximum likelihood or
Bayesian methods (Fisher et al., 2024), and is accompanied by confidence or credible intervals. Being
regression-based and not limited to tested concentrations, it is a significant improvement over the
NOEC (Fox, 2010a).

• NSEC (No-Significant-Effect Concentration)
Similar to the NEC, the NSEC is a regression-based analog of the NOEC (Fisher & Fox, 2023a). While
the NEC assumes a threshold response mechanism, the NSEC does not. Although computationally
possible, the NSEC should not be computed from threshold models as it is based on a different model
parameter to the NEC.

The NSEC retains the operational logic of “no significant effect” while addressing some of the more
serious concerns with the NOEC (Fisher & Fox, 2023a).

• BMD (Benchmark Dose)
The dose corresponding to a predefined benchmark response (BMR), such as a 10% increase in incidence
(quantal data) or a 5–10% relative change in mean response (continuous data). The BMD is an inverse-
regression problem which requires either an analytic or numerical solution to the equation

𝐵𝑀𝐷 = {𝑥 ∶ 𝑓 (𝑥; Θ̂) = 𝑦} (2.1)

where Θ̂ is the vector of parameter estimates for the dose-response model 𝑓 (⋅) and 𝑦 is a response
value defined by the BMR.

Unlike the NOEC, NEC and NSEC which are estimates of no (significant) effect, the BMD and BMDL
(see below) integrate biologically meaningful effects via the specification of the BMR. (Crump, 1984;
Slob, 2002).
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• BMDL (Benchmark Dose Lower Bound)
The lower one-sided confidence (frequentist) or credible (Bayesian) interval bound on the BMD, typ-
ically at the 95% level. Regulatory agencies adopt the BMDL as the operative point of departure
from the control response, ensuring precaution while explicitly incorporating statistical uncertainty
(EFSA Scientific Committee, 2017, 2022; U.S. Environmental Protection Agency, 2012). In practice,
the BMDL is now the international standard for human health and increasingly for ecotoxicological
risk assessment.

• HC𝑥 (Population toxicity metric: Hazardous Concentration for 𝑥% of species)
Derived from a species sensitivity distribution (SSD), the HC5 (hazardous to 5% of species) is most
widely used. The HC5 provides a probabilistic population-level threshold and underpins water-quality
guidelines in many jurisdictions (Sánchez-Bayo & Goka, 2007).

• PNEC (Predicted No-Effect Concentration)
A regulatory threshold intended to protect most species in an ecosystem. PNECs are typically de-
rived from SSD-HC5 with assessment factors when sufficient data are available, or from single-species
EC𝑥/NOEC values with larger safety factors under data-limited conditions (European Chemicals
Agency (ECHA), 2017).

Note: Although sounding very similar, the PNEC and NEC are conceptually and operationally quite
different in ecotoxicology. The NEC is a model-derived threshold parameter estimated directly from a single-
species dose–response dataset whereas the PNEC is a regulatory benchmark concentration intended to be
protective of an entire ecosystem. It is not tied to a single species but is derived from multiple lines of
evidence.

𝐶 − 𝑡𝑦𝑝𝑒 metrics

• NOEC (No-Observed-Effect Concentration)
Defined as the highest tested concentration at which the mean response is not statistically different
from the mean control response at a pre-specified level of significance (𝛼). The NOEC is constrained
to tested doses, depends strongly on replication and variance, and lacks uncertainty quantification. It
has been heavily criticized as a toxicity metric (Fox, 2009, 2010b; Jager, 2012).

• LOEC (Lowest-Observed-Effect Concentration)
The lowest tested concentration producing a statistically significant effect relative to control. Like
NOEC, LOEC is design-dependent and subject to the same criticisms.

• MATC (Maximum Acceptable Toxicant Concentration)
The MATC is calculated as the geometric mean of the NOEC and LOEC which is simply√

𝑁𝑂𝐸𝐶 ⋅ 𝐿𝑂𝐸𝐶. However the claim that this represents the highest concentration that does not
harm aquatic organisms is naive. By definition, the MATC is the mid-point between the NOEC and
LOEC on a log scale.

The phrase “Maximum Acceptable Toxicant Concentration” can be traced back to the 1960s when
NOEC/LOEC-based methods were in common use (Mount & Stephan, 1967).

Being a mathematical conflation of two flawed metrics, the MATC is possibly even less useful and
interpretable than either alone.
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The MATC has historically been used in the United States to derive chronic aquatic life criteria, but
its reliance on NOEC/LOEC inherits their statistical weaknesses.

2.3 Limitations of Traditional Metrics

Traditional metrics (NOEC, NSEC, ECx etc.) are often interpreted from a statistical significance or effect
magnitude standpoint, but rarely combine both. They do not formally incorporate the notion of equiv-
alence, i.e., demonstrating that an effect is negligibly different or biologically indifferent to the control.
Moreover, they treat the problem asymmetrically: the burden is to prove harm, not to demonstrate safety
within a biologically acceptable margin.

This asymmetry arises because classical null hypothesis tests are designed to detect differences from control
and failure to detect such a difference is not the same as showing that the treatment is similar. In contrast,
equivalence testing explicitly inverts the burden of proof: it allows researchers to declare that an effect
is small enough to be considered safe, within a predefined margin of practical equivalence. This makes
equivalence-based approaches like the EEC fundamentally more aligned with regulatory needs for affirming
safety.

3 Jurisdictional Preferences

3.1 Australia and New Zealand

The ANZECC/ARMCANZ (2000) water-quality guidelines historically relied on NOEC and LOEC
values. More recent practice, however, reflects international developments and emphasizes regression-based
metrics (M. St. J. Warne et al., 2025). Current guidance favors the use of the NEC, low-effect EC10 or EC20
values, and SSD-derived HC5 concentrations as the primary inputs to guideline derivation (M. St. J. Warne
et al., 2025).

3.2 Canada

The Canadian Council of Ministers of the Environment (CCME) employs a tiered strategy. When sufficient
high-quality data are available, SSD-based HC5 values are the preferred metric for deriving water-quality
objectives. In cases where data are more limited, chronic EC𝑥 estimates are combined with assessment
factors to provide protective concentrations. While NOEC values are still found in legacy guidance, recent
Canadian practice discourages their use in favor of regression-based metrics (Canadian Council of Ministers
of the Environment (CCME), 2007).

3.3 United States

The US EPA historically applied the MATC in aquatic life criteria derivation. However, the agency’s
Benchmark Dose Technical Guidance identifies the BMD framework, and particularly the BMDL, as
the scientifically preferred point of departure. Although NOEC/LOEC remain embedded in some regulatory
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programs, BMD and BMDL are now increasingly used in ecological as well as human health risk assessments
(U.S. Environmental Protection Agency, 2012).

3.4 European Union

Under the REACH framework, the European Chemicals Agency (ECHA) discourages reliance on NOEC
values. Instead, 𝑆𝑆𝐷 − HC5 and 𝑅 − 𝑡𝑦𝑝𝑒 metrics such as the EC𝑥 or BMDL are used to derive Predicted
No-Effect Concentrations (PNECs) (European Chemicals Agency (ECHA), 2017). Guidance from EFSA
explicitly endorses BMDL as the point of departure for ecological and health risk assessments, reflecting a
strong preference for 𝑅 − 𝑡𝑦𝑝𝑒 approaches (EFSA Scientific Committee, 2017, 2022).

3.5 Historical and Regulatory Context

The effect concentration (𝐸𝐶𝑥) metric has long been used as a toxicity metric in ecotoxicology and phar-
macology. An ECx is the concentration associated with a specified percentage change in response (e.g.,
EC10 for a 10% reduction in growth or reproduction), interpolated directly from a fitted dose–response
model. This simplicity made ECx attractive in experimental toxicology, particularly as an alternative to
𝐶 − 𝑡𝑦𝑝𝑒 metrics such as the no-observed-effect concentration (NOEC) and lowest-observed-effect concentra-
tion (LOEC). However, 𝐸𝐶𝑥 values were historically often reported as point estimates without confidence
intervals, limiting their usefulness in regulatory risk assessment (M. S. J. Warne et al., 2018). Although
statistical methods such as the delta method or bootstrapping can be applied to estimate confidence bounds
for 𝐸𝐶𝑥, this has not been a consistent practice in the ecotoxicological literature.

In the 1990s, the benchmark dose (BMD) framework emerged within human health risk assessment and
was subsequently adopted in ecological contexts. The U.S. Environmental Protection Agency (Benchmark
Dose Technical Guidance, 2012) and later the OECD (Guidance Document on the Use of the Benchmark
Dose Approach in Risk Assessment, 2020) promoted the BMD approach as a replacement for NOEC/LOEC.
The BMD is mathematically equivalent to an ECx for the same benchmark response definition (see §4.1),
but it is embedded in a regulatory framework that requires formal uncertainty analysis. Specifically, the
lower confidence bound (BMDL) on the BMD is designated as the critical effect level for deriving guideline
values, ensuring a conservative and statistically defensible basis for risk assessment. The BMD approach also
introduced standardized benchmark responses, such as a 10% change or one standard deviation departure
from control, improving cross-study consistency and comparability (EFSA Scientific Committee, 2017).

The practical distinction between ECx and BMD therefore lies less in the mathematical definition and more
in the treatment of uncertainty. Both metrics are point estimates derived from the same concentration–
response function, and both can be accompanied by confidence bounds estimated via profile likelihood,
bootstrap, or delta method. The difference is that the BMD framework institutionalized the use of confidence
bounds, with BMDL serving as the regulatory point of departure. This requirement is reinforced through
guidance documents and dedicated software platforms such as BMDS (US EPA) and PROAST (RIVM)
(National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, 2023),
which standardize the implementation of BMD procedures.

In summary, the 𝐵𝑀𝐷𝑥 for a given benchmark response (BMR) and the 𝐸𝐶𝑥 are mathematically equivalent
when 𝑥 ≡ 𝐵𝑀𝑅. The distinction is primarily procedural and historical: ECx arose as a descriptive toxico-
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logical endpoint, while the BMD evolved into a regulatory framework designed to replace NOEC/LOEC by
embedding uncertainty analysis. The adoption of the BMDL as the protective effect level reflects the broader
shift in ecotoxicology and risk assessment from descriptive statistics toward inferential, uncertainty-based
decision-making (Benchmark Dose Technical Guidance, 2012; EFSA Scientific Committee, 2017; Guidance
Document on the Use of the Benchmark Dose Approach in Risk Assessment, 2020; M. S. J. Warne et al.,
2018).

3.6 Summary

The balance of evidence from both statistical literature and regulatory practice supports a decisive move
away from 𝐶 −𝑡𝑦𝑝𝑒 metrics. These metrics are strongly design-dependent, lack confidence intervals, and may
misrepresent true effect thresholds (Fox, 2009; Jager, 2012). Although some authors defend their continued
use (Green et al., 2013), most scholars and agencies have concluded that 𝑅 − 𝑡𝑦𝑝𝑒 approaches provide more
reliable and biologically meaningful estimates.

𝑅 − 𝑡𝑦𝑝𝑒 metrics offer transparency, reproducibility, and explicit uncertainty quantification. Given its per-
vasiveness in the United States and the European Uninion, it could be argued that the benchmark dose
(BMD) approach, and its associated lower confidence bound (BMDL), represents the international stan-
dard for deriving points of departure. In parallel, community-level protection is most often established
through SSD-based HC5 values and derived PNECs. Together, these developments mark a paradigm shift
in ecotoxicology away from 𝐶 − 𝑡𝑦𝑝𝑒thresholds toward statistically rigorous, 𝑅 − 𝑡𝑦𝑝𝑒 metrics.

4 Similarities and Differences between toxicity metrics1

4.1 BMD versus ECx

The similarities between the BMD and the 𝐸𝐶𝑥 are readily apparent from the definitions provided in section
2.1. Mathematically we we can show equivalence when 𝐵𝑀𝑅 ≡ 𝑥 as follows.

Suppose we fit a parametric model 𝑓 (𝑥; Θ) to describe the mean response at concentration 𝑥 where Θ is a
vector of model parameters.

The benchmark response (BMR) is defined as an 𝑥% change from the control mean response, 𝑓 (0; Θ).

The 𝐸𝐶𝑥 is similarly defined as the solution to:

𝑓 (𝐸𝐶𝑥; Θ) = 𝑓 (0, Θ) (1 − 𝑥/100)

Thus,
𝐸𝐶𝑥 = {𝑐 ∶ 𝑓 (𝑐, Θ) = 𝑦∗}

where
𝑦∗ = (1 − 𝑥/100) ⋅ 𝑓 (0, Θ̂)

1Without loss of generality, we assume a decreasing relationship between dose and response in the remainder of this document.
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.

The BMD is defined identically with

𝑦∗ = (1 − 𝐵𝑀𝑅
100 ) 𝑓 (0, ̂𝜃)

.

So we see the 𝐸𝐶𝑥 and 𝐵𝑀𝐷 are identical when 𝑥 = 𝐵𝑀𝑅.

4.2 BMDL/ECx versus NSEC

Without loss of generality, let the first element of Θ̂, ( ̂𝜃1), be the estimated response-axis intercept (i.e. re-
sponse at 𝑑𝑜𝑠𝑒 = 0) having standard error 𝑆𝐸 ( ̂𝜃1). Now, the 𝑁𝑆𝐸𝐶 is the solution to:

{𝑥 ∶ 𝑓 (𝑥; Θ̂) = ̂𝜃1 − 𝑡𝜈,1−𝛼 ⋅ 𝑆𝐸 ( ̂𝜃1)}

where 𝑡𝜈,1−𝛼 is the 1 − 𝛼 quartile of the 𝑡 distribution having 𝜈 degrees of freedom.

But ̂𝜃1 = 𝑓 (0, Θ̂) and so the previous equation can be written as:

{𝑥 ∶ 𝑓 (𝑥; Θ̂) = 𝑓 (0, Θ̂) − 𝑡𝜈,1−𝛼 ⋅ 𝑆𝐸 ( ̂𝜃1)}

Thus, both the 𝐵𝑀𝐷 and 𝐸𝐶𝑥 are defined in terms of a relative change from the control whereas the 𝑁𝑆𝐸𝐶
uses an absolute change. Equivalence between the 𝐵𝑀𝐷 and 𝑁𝑆𝐸𝐶 occurs for

̂𝜃1 ⋅ 𝛿
100 = 𝑡𝜈,1−𝛼 ⋅ 𝑆𝐸 ( ̂𝜃1)

or, equivalently:
𝛿′ = 𝑡𝜈,1−𝛼 ⋅ 𝑐𝑣 ( ̂𝜃1) 0 < 𝛿′ < 1

where 𝛿′ = 𝛿
100 is either 𝐵𝑀𝑅 or 𝑥 and 𝑐𝑣 ( ̂𝜃1) is the coefficient of variation for ̂𝜃1. Thus:

𝑁𝑆𝐸𝐶 = { 𝐵𝑀𝐷 𝑖𝑓 𝐵𝑀𝑅 = 𝛿′

𝐸𝐶𝑥 𝑖𝑓 𝑥 = 𝛿′

4.3 Reconciling 𝑅 − 𝑡𝑦𝑝𝑒 and 𝐶 − 𝑡𝑦𝑝𝑒 toxicity metrics

An often overlooked requirement of 𝐶 − 𝑡𝑦𝑝𝑒 methods is that they demand replication at each dose level.
This is critical to the way, for example, ANOVA works - it tests for the equality among treatment means via
a comparison of variances - namely the within dose estimate of the error variance 𝜎2 and the between
dose estimate of 𝜎2.

If there is no dose effect (implying, on average, the same response at all doses) then the two estimates will
be approximately equal and the ratio 𝐹 = 𝑀𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛
will (within sampling error) be unity.

However, it can be shown that when there is a dose effect, 𝑀𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛 will be greater than 𝑀𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛
and so 𝐹 = 𝑀𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛
> 1. Whether the computed 𝐹 statistic is signicantly greater than 1 is assessed by
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reference to a critical value from the 𝐹 distribution with a significant result leading to the rejection of the
null hypothesis of no dose effect.

The mathematical details are as follows.

4.3.1 The ANOVA framework

We observe 𝑘 distinct doses {𝑥1, … , 𝑥𝑘}, and for simplicity, assume equal replication 𝑛 ≥ 2. The total
sample size is therefore

𝑁 = 𝑛 𝑘

The standard, one-way ANOVA model is

𝑦𝑖𝑗 = 𝜇(𝑥𝑗) + 𝜀𝑖𝑗, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑘,

with independent errors satisfying 𝐸(𝜀𝑖𝑗) = 0 and Var(𝜀𝑖𝑗) = 𝜎2.

The group (dose) means are:

̄𝑦⋅𝑗 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖𝑗, 𝑗 = 1, … , 𝑘.

Now, the within-dose estimate of 𝜎2 (also known as the ‘pure error’ estimate) is:

𝑆𝑆W =
𝑘

∑
𝑗=1

𝑛
∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦⋅𝑗)
2,

dfW = 𝑁 − 𝑘,

𝑀𝑆W = 𝑆𝑆W
𝑁 − 𝑘.

and the between-dose estimate of 𝜎2 is:

𝑆𝑆B = 𝑛
𝑘

∑
𝑗=1

( ̄𝑦.𝑗 − ̄𝑦..)
2,

dfB = 𝑘 − 1,

𝑀𝑆B = 𝑆𝑆B
𝑘 − 1.

A generic, post-ANOVA contrast is evaluated via the statistic 𝑇 given by:

𝑇𝑗 = ̄𝑦⋅𝑗 − ̄𝑦⋅0
𝜎̂ANOVA√2/𝑛

,

where the variance estimate is
𝜎̂2

ANOVA = 𝑀𝑆W, 𝑑𝑓W = 𝑁 − 𝑘.

Dunnett’s test (Dunnett, 1955) which is one of many multiple comparison techniques used to tease out
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differences between pairs of responses following the rejection of the null hypothesis of no dose effect. It
differs from other comparison tests in that it only looks at differences between the control response and the
response at the remaining dose levels. Importantly, it adjusts the level of significance of each of the pairwise
comparisons so that the overall family-wise error rate (𝐹𝑊𝐸𝑅) equals the nominated 𝛼.

The significance of each comparison is assessed by comparing the computed value of 𝑇 for the sample data
with a critical value from Dunnett’s distribution having denominator 𝑑𝑓 = 𝑁 − 𝑘.

As previously noted, the ANOVA approach is model-agnostic - by reducing dose to a categorical variable, the
structural form of the relationship between response and dose is ignored. In the case of 𝑛 = 1 (i.e. a single
observation per dose level), the ANOVA model is saturated, meaning there are as many model parameters
as data values and hence 𝑁 = 𝑘 leaving 𝑁 − 𝑘 = 0 degrees of freedom with which to estimate the error
variance. With replication, the model is not saturated — it estimates one mean per dose group and leaves
residual variation within groups. In most dose-response experiments both 𝑛 and 𝑘 are small, meaning 𝑑𝑓𝑤
is also small and, as we shall see shortly, this has implications for the precision with which 𝜎2 is estimated
as well as the power of Dunnett’s test.

In contrast to ANOVA-based methods, regression-based toxicity estimates model the observed relationship
between dose and response and aim to do so using as few parameters as possible.

4.3.2 The 𝑅 − 𝑡𝑦𝑝𝑒 framework

We fit a parametric dose response mean function 𝜂(𝑥; 𝜃) with 𝑝 estimable parameters. Fitted means at
observed doses are:

̂𝜂𝑗 = 𝜂(𝑥𝑗; ̂𝜃), 𝑗 = 1, … , 𝑘.

The adequacy of the fitted model is assessed using information contained in the residual sum of squares and
the mean squared residual where:

𝑆𝑆res =
𝑘

∑
𝑗=1

𝑛
∑
𝑖=1

(𝑦𝑖𝑗 − ̂𝜂𝑗)
2,

dfres = 𝑁 − 𝑝,

𝑀𝑆res = 𝑆𝑆res
𝑁 − 𝑝.

Unlike the 𝐶 − 𝑡𝑦𝑝𝑒 framework, replicating measurements at each dose is not a requirement. As argued by
Fox (Fox et al., 2016), in the context of dose-response experimentation where resources are constraining and
the objective is to get a good ‘fix’ on the functional form of the dose-response relationship, replication is
wasteful. Rather than replicating at each dose, Fox (Fox et al., 2016) suggests a more useful approach would
be to spread the experimental effort across the dose continuum, although how to do this in an ‘optimal’
manner requires advanced statistical skills.

When replication has been used in a dose-response experiment, advantage can be taken of the extra infor-
mation provided not on the functional form of the relationship, but whether the relationship is useful. This
‘extra’ information comes about from a further partitioning of the residual sum of squares (𝑆𝑆res) into a
‘pure error’ component (𝑆𝑆pe) and a ‘lack of fit’ component (𝑆𝑆lof).
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It is shown in Appendix 5 that this decomposition of both the sums of squares and the degrees of freedom
is a simple additive one, that is:

𝑆𝑆res = 𝑆𝑆pe + 𝑆𝑆lof

with:
𝑑𝑓𝑝𝑒 = 𝑁 − 𝑘

𝑑𝑓𝑙𝑜𝑓 = 𝑘 − 𝑝
𝑑𝑓𝑟𝑒𝑠 = 𝑑𝑓𝑝𝑒 + 𝑑𝑓𝑙𝑜𝑓 = 𝑁 − 𝑝

Two things follow from this decomposition: (i) the significance of the lack-of-fit can be assessed by comparing
the ratio

𝑀𝑆𝑙𝑜𝑓/𝑀𝑆𝑝𝑒

with a critical value from 𝐹𝑘−𝑝,𝑁−𝑘; and (ii) if the parametric model is correct, 𝑆𝑆𝑙𝑜𝑓 = 0 and hence
𝑀𝑆𝑟𝑒𝑠 = 𝑆𝑆𝑟𝑒𝑠

𝑁−𝑝 = 𝑆𝑆𝑝𝑒
𝑁−𝑝 = 𝑁−𝑘

𝑁−𝑝 𝑀𝑆𝑝𝑒.

It is further shown in Appendix 5 that if the parametric model is correct, the theoretical variances of 𝑀𝑆𝑝𝑒
and 𝑀𝑆𝑟𝑒𝑠 are, respectively:

Var(𝑀𝑆pe) = 2𝜎4

𝑁 − 𝑘, Var(𝑀𝑆res) = 2𝜎4

𝑁 − 𝑝.

and for 𝑝 < 𝑘 it follows that Var(𝑀𝑆res) < Var(𝑀𝑆pe)

4.3.3 Discussion: Implications for Dunnett’s Test

The inequality
Var(𝑀𝑆res) < Var(𝑀𝑆pe)

(for 𝑝 < 𝑘) implies that if the parametric model is correct, the residual mean square from the fitted dose–
response model provides a more precise estimate of 𝜎2 than the pure-error mean square from the one-way
ANOVA treatment.

In the context of multiple comparisons, this matters because Dunnett’s test relies on the ANOVA error
mean square as its variance estimator. To see this, we have from Appendix 2 that for a one-sided test, the
per-comparison power for treatment 𝑖 is:

𝑃𝑜𝑤𝑒𝑟 = 1 − pt (𝑐𝛼, 𝜈, 𝜆)

where pt (𝑐𝛼, 𝜈, 𝜆) is the cdf of a noncentral 𝑇 distribution evaluated at 𝑐𝛼 (critical value of Dunnett’s test)
and the non-centrality parameter (𝑁𝐶𝑃), 𝜆 and degrees of freedom 𝜈 are given as:

𝜆𝑖 (𝜎) = Δ𝑖

𝜎√1/𝑛𝑖 + 1/𝑛0

, 𝜈 = (
𝑘

∑
𝑗=0

𝑛𝑗) − (𝑘 + 1)

It is evident that this power varies inversely with 𝜎. For a regression model, the estimate of 𝜎2 is 𝜎̂𝑅 =
𝑀𝑆𝑟𝑒𝑠, while for an ANOVA model it is 𝜎̂𝐴 = 𝑀𝑆𝑟𝑒𝑠, but for a correctly specified dose-response model

17



𝑀𝑆𝑟𝑒𝑠 = 𝑁−𝑘
𝑁−𝑝 𝑀𝑆𝑝𝑒 ⇒ 𝑀𝑆𝑟𝑒𝑠 < 𝑀𝑆𝑝𝑒 for 𝑝 < 𝑘 and so 𝜎̂𝑅 < 𝜎̂𝐴. Thus, the power for detecting differences

from the control will be greater for a correctly specified dose-response model than the power of a Dunnett’s
type test.

However, this gain depends critically on correct model specification. If the model is mis-specified,
lack-of-fit inflates 𝑀𝑆res, reducing power and potentially compromising error control.

4.3.4 Power and threshold implications

• 𝐶 − 𝑡𝑦𝑝𝑒 toxicity metrics
Because 𝑀𝑆pe is estimated with only 𝑁 − 𝑘 degrees of freedom, the variance estimate is less precise.
This inflates the confidence intervals around the treatment means. As a result, the observed difference
from control must be larger to reach statistical significance. In practice this means the NOEC will
tend to be higher (less sensitive), which is an undesirable outcome (hence the claim that the NOEC
‘rewards’ poor experiments).

• 𝑅 − 𝑡𝑦𝑝𝑒 toxicity metrics
With 𝑁 − 𝑝 degrees of freedom, 𝑀𝑆res is a more precise variance estimate when the model lack-of-fit is
low. The lower bound 𝑙𝑜𝑤𝑒𝑟 for the intercept is therefore sharper, leading to a smaller (more sensitive)
toxicity estimate. Under correct model specification, this provides a more precise threshold.

• Trade-off: If the parametric model is misspecified, 𝑆𝑆lof ≫ 0 inflates 𝑀𝑆res, leading to an inflated
toxicity estimate.

4.3.5 Example

In this example we evaluate the statistical power of two different approaches for determining effect concen-
trations in dose–response experiments. The R code simulates data under a specified model and then applies
both the traditional ANOVA with Dunnett’s test and a model-based benchmark dose approach.

By repeating the simulation many times, we can estimate the probability that each method will correctly
identify a treatment effect at the chosen significance level. The output therefore provides a direct compar-
ison of the operating characteristics of the two methods, highlighting situations in which the model-based
approach may offer higher power due to its use of the full dose–response curve, while the ANOVA approach
may be more limited by its reliance on pairwise contrasts and the associated variability in the pure-error
mean square.
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This example illustrates the difference how differences in underlying assumptions about variance estimation
translate into differences in sensitivity for detecting ecotoxicologically meaningful effects.

5 Equivalence Testing - Introducing the Equivalent Effects Con-
centration (EEC)

5.1 Overview of Equivalence Testing

Equivalence testing reverses the traditional hypothesis testing framework. Rather than testing whether an
effect differs from zero, equivalence testing evaluates whether an observed effect lies within a pre-specified
margin (𝛿) of a reference value (Lakens, 2017; Schuirmann, 1987). It addresses the question: is the observed
effect sufficiently close to the reference value to be considered biologically unimportant?
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Mathematically:

𝐻0 ∶ |𝑒𝑓𝑓𝑒𝑐𝑡| ≥ 𝛿
𝐻𝐴 ∶ |𝑒𝑓𝑓𝑒𝑐𝑡| < 𝛿

This test is often implemented via the Two One-Sided Tests (TOST) procedure as follows.

Split the null hypotheses into two, one-sided tests:

𝐻01 ∶ 𝑒𝑓𝑓𝑒𝑐𝑡 ⩽ −𝛿
𝐻11 ∶ 𝑒𝑓𝑓𝑒𝑐𝑡 > −𝛿

and
𝐻02 ∶ 𝑒𝑓𝑓𝑒𝑐𝑡 ⩾ +𝛿
𝐻12 ∶ 𝑒𝑓𝑓𝑒𝑐𝑡 < +𝛿

The two one-sided tests procedure is that if we conclude that effect > −𝛿 and effect < +𝛿, then it has
effectively been concluded that −𝛿 < effect < +𝛿.

We show in the Appendix 1 that the TOST procedure is operationally identical to the procedure of declar-
ing equivalence only if the 1 − 2𝛼 confidence interval for the response is completely contained within the
equivalence interval [−𝛿, +𝛿].

Equivalence condition (90% CI within margin):

𝐶𝐼(1−2𝛼) ⊆ [−𝛿, +𝛿] ⇒ Conclude equivalence

5.2 Defining the EEC

For a monotonically decreasing dose-response relationship (common in ecotoxicology), where the response
decreases with increasing dose (e.g., survival, growth,reproduction), the Equivalent Effects Concentration
(EEC) is defined as:

EEC = min {𝑑 ∣ 𝐶𝐼 ̂𝑓(𝑑) ⊆ [𝑅 − 𝛿, 𝑅 + 𝛿]}

where 𝑅 is the reference value - typically 𝑓 (0, Θ̂) in regression-based models.

That is, the smallest concentration at which the entire confidence interval for the predicted mean
response lies within a pre-defined equivalence band around the nominal response 𝑅 (typically the control
response).

This ensures that the EEC reflects a conservative and protective threshold, marking the lowest concen-
tration beyond which responses can no longer be confidently declared as biologically equivalent to control. It
aligns with regulatory goals of defining a safe concentration with high statistical and ecological confidence.
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5.3 Positioning the EEC Among Other Metrics

The EEC not only compliments, but as is shown in the next section, subsumes exisiting metrics. - Like
NOEC/NSEC, it identifies a safe concentration. - Like BMDL and NSEC, it uses dose-response modeling.
- Unlike either the NOEC or NSEC, it provides a direct test of equivalence rather than absence-of-effect or
defined-effect. The EEC is thus especially suitable in regulatory or guideline contexts where the goal is to
demonstrate safety with high confidence.

5.4 Common toxicity Metrics as Variants of the Equivalent Effects Concentra-
tion (EEC)

The Equivalent Effects Concentration (EEC) provides a unifying framework for interpreting traditional
toxicity metrics. Defined as the lowest concentration at which the confidence interval for the predicted
response lies within a biologically acceptable margin (𝛿) around a reference response (typically the control),
the EEC captures both statistical certainty and biological relevance.

All commonly used metrics can be understood as variants or limiting cases of the EEC, differing only in how
𝛿 is defined, how uncertainty is incorporated, or whether the comparison is relative or absolute.

5.4.1 𝐸𝐶𝑥 and BMD as Deterministic EECs

It has already been noted that the 𝐸𝐶𝑥 is equivalent to a BMD with 𝑥 replaced by the benchmark response
(BMR). Both metrics specify a fixed relative effect size but do not require that the confidence interval of the
prediction be contained within an equivalence band. In this sense, the 𝐸𝐶𝑥 and BMD can be regarded as
point‑estimate versions of the EEC, representing deterministic thresholds that omit the statistical safeguard
of equivalence testing.

5.4.2 BMDL as a Confidence‑Bounded EEC

The BMDL is the lower confidence limit on the BMD. By reintroducing uncertainty, the BMDL is effectively
a one‑sided confidence‑interval version of the EEC, with 𝛿 tied to the chosen BMR. Conceptually, the
BMDL occupies a middle ground between the purely deterministic BMD and the fully conservative EEC,
acknowledging variability while still linking the margin directly to a fixed percentage change.

5.4.3 NSEC as an Absolute‑Change EEC

The NSEC is defined as the dose where the predicted response equals the lower confidence bound of the
control mean. This formulation makes the NSEC an absolute‑change metric, in contrast to the relative‑change
definitions of BMD and 𝐸𝐶𝑥. The NSEC is therefore equivalent to an EEC in which 𝛿 as defined in §4 is
determined by the product of the standard error of the control and an appropriate 𝑡‑statistic. In this way,
the NSEC can be understood as an absolute‑margin EEC anchored on the variability of the fitted control
response.
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5.4.4 NOEC as a Discrete‑Dose Approximation of the EEC

The No‑Observed‑Effect Concentration (NOEC) is determined by a sequence of Dunnett‑style multiple com-
parisons of treatments to control, using the ANOVA error mean square (𝑀𝑆𝑝𝑒) as the variance estimator.
Within the EEC framework, the NOEC corresponds to a situation in which 𝛿 is implicit in the size of the con-
fidence intervals around treatment means. Unlike the model‑based approaches, the NOEC depends strongly
on the experimental design, particularly dose spacing and replication, and it employs a noisier variance
source (based on 𝑀𝑆𝑝𝑒 rather than the model‑based 𝑀𝑆𝑟𝑒𝑠). Consequently, it functions as a low‑power,
categorical approximation to the EEC that is sensitive to design choices.

5.4.5 NEC as the Zero‑Margin EEC

The NEC derives from threshold or segmented regression models, representing the concentration below which
responses are indistinguishable from control. Within the EEC framework, this corresponds to the limiting
case in which 𝛿 → 0. The NEC can therefore be regarded as the strictest variant of the EEC, demanding
exact equivalence with control and tolerating no departure from the reference level.

5.4.6 Summary

The relationships among these metrics can be summarized in the following table.

Metric Relation to EEC Key Difference

𝐸𝐶𝑥 / BMD Deterministic point‑estimate EEC Ignores CI containment
BMDL One‑sided CI EEC 𝛿 tied to chosen BMR
NSEC Absolute‑change EEC 𝛿 = 𝑆𝐸(control) × 𝑡
NOEC Discrete‑dose EEC 𝛿 implicit in ANOVA contrasts
NEC Zero‑margin EEC 𝛿 → 0

5.4.7 Implications

This reframing demonstrates that the EEC subsumes all traditional toxicity metrics. Each metric arises from
specific assumptions about the equivalence margin 𝛿, the treatment of uncertainty, and the modeling ap-
proach. By embedding all metrics within the EEC framework, regulators and practitioners gain a consistent
and transparent basis for comparing and interpreting toxicity thresholds.

5.5 Strengths and weakenesses of the EEC

Strengths: (as for BMDL) but additionally: - Directly answers the regulatory question: is the response at
the EEC (biologically) equivalent to the control response? - Avoids pitfalls of p-values although still uses a
NHST framework - albeit in a slightly different manner (see § 2). - Grounded in effect size and margin of
relevance.

Weaknesses: - Depends on selection of 𝛿. - Requires root-finding and bootstrapping to estimate CIs.
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6 Worked Example in R

We demonstrate the EEC approach using a synthetic dataset and the drc package in R.
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library(drc)

# Simulated data
set.seed(123)
data <- data.frame(

dose = rep(c(0, 0.1, 0.3, 1, 3, 10), each = 6),
response = c(

rnorm(6, 1.00, 0.05),
rnorm(6, 0.98, 0.05),
rnorm(6, 0.96, 0.05),
rnorm(6, 0.90, 0.05),
rnorm(6, 0.75, 0.05),
rnorm(6, 0.50, 0.05)

)
)

# Fit dose-response model
fit <- drm(response ~ dose, data = data, fct = LL.4())
plot(fit)
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summary(fit)

##
## Model fitted: Log-logistic (ED50 as parameter) (4 parms)
##
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## Parameter estimates:
##
## Estimate Std. Error t-value p-value
## b:(Intercept) 0.744313 0.229627 3.2414 0.002778 **
## c:(Intercept) -0.032973 0.665873 -0.0495 0.960814
## d:(Intercept) 1.017991 0.018136 56.1315 < 2.2e-16 ***
## e:(Intercept) 11.999005 19.148626 0.6266 0.535350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
##
## 0.0457373 (32 degrees of freedom)

ED(fit, 10, interval = "delta") # Estimated dose for 10% effect

##
## Estimated effective doses
##
## Estimate Std. Error Lower Upper
## e:1:10 0.62676 0.48405 -0.35921 1.61273

# Define equivalence margin
delta <- 0.1

# Estimate control response
alpha_hat <- predict(fit, newdata = data.frame(dose = 0))

# Predict over fine dose grid
dose_grid <- exp(seq(log(0.01), log(10), length.out = 500))
preds <- predict(fit, newdata = data.frame(dose = dose_grid), interval = "confidence")

# Identify EEC: highest dose where CI is within [alpha - delta, alpha + delta]
eec_pass <- preds[, 2] >= (alpha_hat - delta) & preds[, 3] <= (alpha_hat + delta)
EEC <- max(dose_grid[eec_pass], na.rm = TRUE)

cat("EEC:", round(EEC, 3), "\n")

## EEC: 0.366
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6.1 Graphical Comparison of metrics

For this comparison, we use data in Table 1 (Fisher & Fox, 2023b).

Table 2: Fish growth across a range of concentrations of an unknown pollutant
Concentration Rep 1 Rep 2 Rep 3
0 6.59 6.14 7.19
1 4.91 5.03 6.25
2 5.89 7.44 6.11
5 4.51 6.75 5.69
11 4.52 5.52 3.71
25 2.54 1.76 0.21
50 0.10 0.00 0.91

Note. There are three independent replicates for each concentration treatment. Rep = replicate.

6.1.1 Explanation of R code (see §6.1.11 below)

To run: 1. copy the code to a file 2. use the R command source(filename) where filename is
whatever you called the file in 1.

User Settings The top of the script sets key parameters: - delta_prop: 𝛿 as a fraction of the control response
(e.g. 10%). - alpha_one: Significance level (e.g. 0.05). - B: Number of bootstrap replicates. - endpoint_decreases:
Whether the endpoint is expected to decrease with increasing dose. - data_file: CSV file with columns dose,
response, etc. - eec_default: Whether to use one-sided or two-sided equivalence.

6.1.2 EEC Type Selection

Allows interactive choice (if running in a console) between: 1. One-sided non-inferiority (EEC_95) 2. Two-
sided equivalence via TOST (EEC_90) Sets internal flags to control which version of EEC to compute.

6.1.3 Load Data and Fit Model

• Reads in the dataset.
• Renames dose to conc.
• Fits a 4-parameter log-logistic dose–response model using drc::drm().

6.1.4 Predicted Values and Root-Finding Helpers

Defines two utility functions: - get_pred(): safely extract fitted value and standard error for a given concen-
tration. - safe_root(): a wrapper for uniroot() that returns NA if the function doesn’t cross zero or contains
NAs.
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6.1.5 Basic Quantities

Extracts control response (alpha_hat) and standard error.
Computes: - delta: the effect size margin. - tcrit95: t-quantile for 95% confidence. Also defines a function
effect() to calculate the treatment effect relative to control.

6.1.6 NSEC Calculation

• NSEC_95 is computed as the concentration at which the predicted mean drops below the lower 95% CI
of the control.

• NSEC_delta is where the predicted response equals control minus 𝛿. Bootstrap functions (boot_NSEC95,
boot_NSECd) are used to compute confidence intervals.

6.1.7 BMDL Calculation

Defines a bootstrap function that computes the concentration at which the response differs from control by
𝛿. Returns the 5th percentile of bootstrap estimates as the BMDL_95.

6.1.8 EEC Calculation

• For EEC_95, computes where the upper bound of the effect crosses 𝛿.
• For EEC_90, computes where the absolute effect ± margin crosses 𝛿 (TOST logic). Uses root-

finding over predicted values, then bootstraps this estimate.

6.1.9 Results Table

Outputs a summary table showing: - Point estimates for NSEC, BMDL, EEC - 95% bootstrap confidence
intervals (except for BMDL, which uses 5%) Enables comparison of where each threshold falls along the
concentration axis.

6.1.10 Plotting

The final plot: - Shows the fitted dose–response curve with 95% CI ribbon - Adds a dashed horizontal line at
the control ± 𝛿 margin - Adds vertical lines for each metric - Includes a legend mapping line styles and colors
to each metric This visualization helps highlight differences in how each threshold is defined and where it
falls.
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6.1.11 R Code for comparing metrics

# source(knitr::purl("toxicity_metrics.Rmd", output = tempfile()))
############################################################
## Unified toxicity metrics – choose 1-sided or 2-sided EEC
############################################################
library(knitr)
library(kableExtra)
library(tidyverse)

## ---------- USER SETTINGS ---------------------------------------------
delta_prop <- 0.10 # delta as fraction of control mean
alpha_one <- 0.05 # one-sided alpha (95 % bounds)
B <- 10 # bootstrap replicates
endpoint_decreases <- TRUE
#data_file <- "~/Budapest_2024/OSLO/Equivalence/NSEC_paper.txt"
data_file <- "~/Budapest_2024/OSLO/Equivalence/growth.csv"

## ---------- CHOOSE EEC TYPE -------------------------------------------
eec_default <- "1" # "1" = one-sided 95 %, "2" = two-sided 90 %
if (interactive()) {

cat("\nWhich EEC?\n",
" 1. one-sided 95 % non-inferiority (upper bound .LE. delta)\n",
" 2. two-sided 90 % TOST equivalence (|effect| .LE. delta)\n", sep = "")

ans <- menu(c("One-sided 95 %", "Two-sided 90 %"), graphics = FALSE)
choice <- if (ans == 0) eec_default else as.character(ans)

} else {
choice <- eec_default

}
use_two_sided <- identical(choice, "2")

## ---------- PACKAGES ---------------------------------------------------
suppressPackageStartupMessages({

library(drc); library(boot); library(ggplot2)
})
boot_quiet <- function(...) suppressWarnings(boot(...))

# ------------------------------------------------------------------
# PROGRESS-BAR bootstrap wrapper (quiet + bar)
# ------------------------------------------------------------------
boot_pb <- function(data, statistic, R, title = "Bootstrapping", ...) {

if (.Platform$OS.type == "windows") {
pb <- winProgressBar(title = title,

label = "Progress...",
min = 0, max = R, width = 300)

i <- 0L
stat_wrap <- function(d, idx) {

i <<- i + 1L
setWinProgressBar(pb, i, label = sprintf("%s: %d of %d", title, i, R))
statistic(d, idx)

}
res <- suppressWarnings(boot::boot(data, stat_wrap, R = R, ...))
close(pb)
cat("\n")
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return(res)
} else {

pb <- txtProgressBar(min = 0, max = R, style = 3)
i <- 0L
stat_wrap <- function(d, idx) {

i <<- i + 1L
setTxtProgressBar(pb, i)
statistic(d, idx)

}
res <- suppressWarnings(boot::boot(data, stat_wrap, R = R, ...))
close(pb)
cat("\n")
return(res)

}
}

## ---------- DATA & MODEL ----------------------------------------------
mydata <- read.csv(data_file)
#mydata$response <- with(mydata, r / n)
names(mydata)[names(mydata) == "dose"] <- "conc"
mod <- drm(response ~ conc, data = mydata, fct = LL.4())

## ---------- HELPERS ----------------------------------------------------
get_pred <- function(model, x) {

pr <- tryCatch(predict(model, data.frame(conc = x), se.fit = TRUE),
error = function(e)

tryCatch(predict(model, data.frame(conc = x), seFit = TRUE),
error = function(e2) NA))

if (is.list(pr) && !is.null(pr$fit)) list(fit = pr$fit, se = pr$se.fit)
else if (is.matrix(pr) || is.data.frame(pr)) list(fit = pr[,1], se = pr[,2])
else if (is.numeric(pr) && length(pr) == 2) list(fit = pr[1], se = pr[2])
else list(fit = NA_real_, se = NA_real_)

}
safe_root <- function(fun, interval) {

fL <- fun(interval[1]); fR <- fun(interval[2])
if (anyNA(c(fL, fR)) || fL * fR > 0) return(NA_real_)
uniroot(fun, interval)$root

}

## ---------- BASIC QUANTITIES ------------------------------------------
rng <- range(mydata$conc)
control_c <- min(mydata$conc)
pred0 <- get_pred(mod, control_c)
alpha_hat <- pred0$fit
se_alpha <- pred0$se
delta <- delta_prop * alpha_hat
tcrit95 <- qt(1 - alpha_one, df = mod$df.residual)

effect <- function(c) {
pr <- get_pred(mod, c)
if (anyNA(c(pr$fit, pr$se))) return(list(g = NA, se = NA))
g <- if (endpoint_decreases) alpha_hat - pr$fit else pr$fit - alpha_hat
list(g = g, se = pr$se)

}
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g_upper <- function(c) { with(effect(c), g + tcrit95 * se) }

## ---------- NSEC & BMDL ESTIMATES + CIs -------------------------------
root_NSEC95 <- safe_root(function(c) get_pred(mod, c)$fit -

(alpha_hat - se_alpha * tcrit95), rng)
L_alpha_delta <- (alpha_hat - delta) - tcrit95 * se_alpha
root_NSECd <- safe_root(function(c) get_pred(mod, c)$fit - L_alpha_delta, rng)

boot_NSECd <- function(data, idx) {
m <- tryCatch(drm(response ~ conc, data = data[idx, ], fct = LL.4()),

error = function(e) return(NA_real_))
ctl <- get_pred(m, min(data$conc)); if (anyNA(ctl$fit)) return(NA_real_)
a <- ctl$fit; seA <- ctl$se
L_ad <- (a - delta_prop * a) - tcrit95 * seA
safe_root(function(c) get_pred(m, c)$fit - L_ad, range(data$conc))

}
boot_NSEC95 <- function(data, idx) {

m <- tryCatch(drm(response ~ conc, data = data[idx, ], fct = LL.4()),
error = function(e) return(NA_real_))

ctl <- get_pred(m, min(data$conc)); if (anyNA(ctl$fit)) return(NA_real_)
a <- ctl$fit; seA <- ctl$se
safe_root(function(c) get_pred(m, c)$fit - (a - seA * tcrit95),

range(data$conc))
}
#cat("Bootstrapping NSEC_delta …\n")
#NSECd_CI <- quantile(na.omit(boot_pb(mydata, boot_NSECd, R = B)$t), c(0.025, 0.975), names = FALSE)
cat("Bootstrapping NSEC_delta …\n")
NSECd_CI <- quantile(

na.omit(boot_pb(mydata, boot_NSECd, R = B, title = "Bootstrapping NSEC_delta")$t),
c(0.025, 0.975),
names = FALSE

)

cat("Bootstrapping NSEC_95 …\n")
#NSEC95_CI <- quantile(na.omit(boot_pb(mydata, boot_NSEC95, R = B)$t), c(0.025, 0.975), names = FALSE)
NSEC95_CI <- quantile(

na.omit(boot_pb(mydata, boot_NSEC95, R = B, title = "Bootstrapping NSEC_95")$t),
c(0.025, 0.975),
names = FALSE

)

boot_BMDL <- function(data, idx) {
m <- tryCatch(drm(response ~ conc, data = data[idx, ], fct = LL.4()),

error = function(e) return(NA_real_))
ctl <- get_pred(m, min(data$conc)); if (anyNA(ctl$fit)) return(NA_real_)
a <- ctl$fit
gfun <- function(c) {

pr <- get_pred(m, c); if (is.na(pr$fit)) return(NA_real_)
if (endpoint_decreases) a - pr$fit else pr$fit - a

}
safe_root(function(c) gfun(c) - delta, range(data$conc))

}
cat("Bootstrapping BMDL_95 …\n")
#BMDL <- quantile(na.omit(boot_pb(mydata, boot_BMDL, R = B)$t), 0.05, names = FALSE)
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BMDL <- quantile(
na.omit(boot_pb(mydata, boot_BMDL, R = B, title = "Bootstrapping BMDL_95")$t), 0.05,names = FALSE)

## ---------- EEC ESTIMATE & CI ------------------------------------------
if (use_two_sided) {

tcrit_eec <- qt(1 - 0.10/2, df = mod$df.residual)
eec_label <- "EEC_90"
g_eec <- function(c) {

ef <- effect(c); if (anyNA(unlist(ef))) return(NA_real_)
abs(ef$g) + tcrit_eec * ef$se

}
} else {

tcrit_eec <- tcrit95
eec_label <- "EEC_95"
g_eec <- g_upper

}
root_EEC <- safe_root(function(c) g_eec(c) - delta, rng)

boot_EEC <- function(data, idx) {
m <- tryCatch(drm(response ~ conc, data = data[idx, ], fct = LL.4()),

error = function(e) return(NA_real_))
ctl <- get_pred(m, min(data$conc)); if (anyNA(ctl$fit)) return(NA_real_)
a <- ctl$fit
gfun <- function(c) {

pr <- get_pred(m, c)
if (anyNA(c(pr$fit, pr$se))) return(NA_real_)
g <- if (endpoint_decreases) a - pr$fit else pr$fit - a
if (use_two_sided) abs(g) + tcrit_eec * pr$se else g + tcrit_eec * pr$se

}
safe_root(function(c) gfun(c) - delta, range(data$conc))

}
cat("Bootstrapping", eec_label, "…\n")
#EEC_CI <- quantile(na.omit(boot_pb(mydata, boot_EEC, R = B)$t),
# c(0.025, 0.975), names = FALSE)
EEC_CI <- quantile(

na.omit(boot_pb(mydata, boot_EEC, R = B, title = eec_label)$t),
c(0.025, 0.975),
names = FALSE

)

## ---------- RESULTS TABLE ----------------------------------------------
results <- data.frame(

Metric = c("NSEC_95", "NSEC_delta", "BMDL_95%", eec_label),
Estimate = c(root_NSEC95, root_NSECd, BMDL, root_EEC),
CI_lower = c(NSEC95_CI[1], NSECd_CI[1], NA, EEC_CI[1]),
CI_upper = c(NSEC95_CI[2], NSECd_CI[2], NA, EEC_CI[2])

)
# print(results, digits = 4)
kable(results, format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("striped", "hold_position"))

#results %>%
# gt() %>%
# fmt_number(
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# columns = where(is.numeric), # or use specific names like columns = c("EEC", "NSEC", "BMD")
# decimals = 3
# )

## ---------- LEGEND PREP -------------------------------------------------
order_levels <- results$Metric[order(results$Estimate, na.last = TRUE)]
grid <- data.frame(conc = seq(rng[1], rng[2], length.out = 200))
grid_pred <- t(sapply(grid$conc, function(x) unlist(get_pred(mod, x))))
grid$fit <- grid_pred[, 1]
grid$upr <- grid$fit + tcrit95 * grid_pred[, 2]
grid$lwr <- grid$fit - tcrit95 * grid_pred[, 2]
hline <- if (endpoint_decreases) alpha_hat - delta else alpha_hat + delta

vlines <- data.frame(
Metric = factor(order_levels, levels = order_levels),
x = results$Estimate[match(order_levels, results$Metric)]

)
legend_segs <- data.frame(

Metric = vlines$Metric,
x = rng[1],
xend = rng[1] + diff(rng)*0.08,
y = hline,
yend = hline,
row.names = NULL

)
cols <- setNames(grDevices::rainbow(length(order_levels), v = .9, s = .85),

order_levels)
lts_base <- c(`NSEC_95` = "11", `NSEC_delta` = "31",

`BMDL_95%` = "22", `EEC_95` = "44", `EEC_90` = "44")
lts <- lts_base[order_levels]
label_vec <- setNames(

sprintf("%s (%.2f)", order_levels,
results$Estimate[match(order_levels, results$Metric)]),

order_levels
)

## ----------SET UP POSITIONS OF CONFIDENCE BANDS FOR EACH METRIC----------

band_data <- subset(results,
Metric %in% c("EEC_95", "NSEC_95", "NSEC_delta") &

!is.na(CI_lower) & !is.na(CI_upper))

# Drop unused factor levels
band_data$Metric <- droplevels(factor(band_data$Metric))

names(band_data)[names(band_data) == "Metric"] <- "Metric" # ensure matching

# Define bounds for the bands
band_data$xmin <- band_data$CI_lower
band_data$xmax <- band_data$CI_upper
band_data$ymin <- 0
band_data$ymax <- max(mydata$response) * 1.05

# Full set of ordered metric names
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order_levels <- results$Metric[order(results$Estimate)]

# Color palette for all metrics (includes BMDL, but ’well subset later)
cols <- setNames(rainbow(length(order_levels), v = .9, s = .85), order_levels)

# Only fill for metrics in band_data
fill_cols <- cols[names(cols) %in% levels(band_data$Metric)]

## ---------- PLOT --------------------------------------------------------
delta_pct <- sprintf("%.0f%%", delta_prop * 100)
legend_title <- bquote("Metric ("*delta*" = "*.(delta_pct)*")")
plot_main <- bquote("Generalized Toxicity metrics ("*delta*" = "*.(delta_pct)*")")

ggplot(mydata, aes(conc, response)) +
geom_point() +

# geom_rect(
# data = band_data,
# aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = Metric),
# alpha = 0.3, color = "white", inherit.aes = FALSE, show.legend = FALSE) +

geom_line(data = grid, aes(x = conc, y = fit)) +
geom_ribbon(data = grid,

aes(x = conc, ymin = lwr, ymax = upr),
inherit.aes = FALSE, alpha = .15) +

geom_hline(yintercept = hline, linetype = "dashed",linewidth = 0.6) +
geom_vline(data = vlines,

aes(xintercept = x, colour = Metric, linetype = Metric),
linewidth = 0.6, show.legend = FALSE) +

geom_segment(data = legend_segs,
aes(x = x, xend = xend, y = y, yend = yend,

colour = Metric, linetype = Metric),
inherit.aes = FALSE, linewidth = 0.6) +

scale_colour_manual(values = cols, labels = label_vec, name = legend_title) +
# scale_fill_manual(values = fill_cols) +

scale_linetype_manual(values = lts, labels = label_vec, name = legend_title) +
labs(y = "Response", x = "Concentration", title = plot_main) +
theme_bw() +
theme(legend.position = "bottom",

legend.direction = "horizontal",
legend.title = element_text(size = 10),
legend.text = element_text(size = 9))

## Warning: package 'readr' was built under R version 4.5.2

## Warning: package 'stringr' was built under R version 4.5.2

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.6
## v forcats 1.0.0 v stringr 1.6.0
## v lubridate 1.9.4 v tibble 3.3.0
## v purrr 1.1.0 v tidyr 1.3.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()

33



## x dplyr::select() masks MASS::select()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

## Bootstrapping NSEC_95 …

## Bootstrapping BMDL_95 …

## Bootstrapping EC10 …

## Bootstrapping EEC_95 …

Metric Estimate CI_lower CI_upper
NSEC_95 6.432298 2.202298 10.964365
EC10 6.944245 2.310202 12.287782
BMDL_95% 2.750583 NA NA
EEC_95 4.025899 1.139059 8.417817
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6.2 Comparison with USEPA BMDP Program

It is noted that the Hill model used in the USEPA BMD program (and others) is equivalent to the 4-parameter
log-logistic model, LL.4 in the drc package via a simple mapping of parameters as follows.

6.2.1 Hill Model (as in USEPA BMD)

𝑓 (𝑥) = 𝑔 + 𝜈𝑥𝑛

𝑘𝑛 + 𝑥𝑛 𝜈 < 0 for monotonically decreasing response

or, equivalently:
𝑓 (𝑥) = 𝑔 + 𝜈

1 + (𝑘/𝑥)
𝑛 = 𝑔 + 𝜈

1 + (𝑥/𝑘)−𝑛

6.2.2 Four parameter Log-logistic Model (LL.4) as in drc

g (𝑥) = 𝑐 + 𝑑 − 𝑐
1 + (𝑥/𝑒)𝑏

To match a decreasing Hill model, we use positive 𝑏 and map: - 𝑐 = 𝑔 + 𝜈 (lower asymptote, high dose) -
𝑑 = 𝑔 (upper asymptote, control) - 𝑒 = 𝑘 (half-max dose) - 𝑏 = 𝑛 (Hill power, ≥ 1) NB: Using the alternative
mapping 𝑏 = −𝑛 and 𝑐 = 𝑔, 𝑑 = 𝑔 + 𝜈 will flip the direction (i.e result in an increasing curve) and strange
looking 𝑔 estimates (often near 0), even though 𝜈, 𝑘, 𝑛 look correct.

6.2.3 Standard errors of Hill Model parameter estimates

The standard error for each of the Hill Model parameter estimates is readily obtained using the output of
LL.4 fit from drc since the former are simply linear combinations of the latter via the mapping above. This
is conveniently handled using matrix notation.

6.2.3.1 drc::LL.4() :

𝑔 (𝑥; 𝑏, 𝑐, 𝑑, 𝑒) = g (𝑥) = 𝑐 + 𝑑 − 𝑐
1 + (𝑥/𝑒)𝑏 , letΘ = (𝑏, 𝑐, 𝑑, 𝑒)𝑇

6.2.3.2 Hill (decreasing response):

𝑓 (𝑥;) = 𝑔 + 𝜈𝑥𝑛
𝑘𝑛+𝑥𝑛 , Φ = (𝑔, 𝜈, 𝑘, 𝑛)𝑇

For a monmotonically decreasing curve:

𝑔 = 𝑑; 𝜈 = 𝑐 − 𝑑; 𝑘 = 𝑒; 𝑛 = 𝑏
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This is a linear reparameterisation:

Φ = 𝐴 Θ where 𝐴 =
⎡
⎢
⎢
⎢
⎣

0 0 1 0
0 1 −1 0
0 0 0 1
1 0 0 0

⎤
⎥
⎥
⎥
⎦

(rows correspond to 𝑔, 𝜈, 𝑘, 𝑛; columns to 𝑏, 𝑐, 𝑑, 𝑒). Let Θ̂ = ( ̂𝑏, ̂𝑐, ̂𝑑, ̂𝑒)𝑇
be the LL.4 estimator. drc reports

the estimated covariance matrix 𝑉 𝑎𝑟 (Θ̂) ≡ ̂𝑉Θ obtained from the inverse observed information/Hessian,
scaled by the residual variance estimate.

6.2.3.3 Variance of mapped Hill parameter estimates. From standard statistical theory,

𝑉 𝑎𝑟 (Φ̂) = 𝐴 𝑉Θ 𝐴𝑇 = ̂𝑉Φ

Hence, the standard errors are:

𝑆𝐸 ( ̂𝜙𝑖) = √( ̂𝑉Φ)
𝑖𝑖

, 𝑖 ∈ {𝑔, 𝜈, 𝑘, 𝑛}

6.2.3.4 Wald confidence intervals for Hill parameter estimates The Wald 100 (1 − 𝛼) % CIs are:

̂𝜙𝑖 ± 𝑡𝑑𝑓,(1−𝛼/2) 𝑆𝐸 ( ̂𝜙𝑖)

where 𝑑𝑓 = 𝑛 − 4.

6.3 Example

We again use the data from (Fisher & Fox, 2023b):

Table 3: Fish growth across a range of concentrations of an unknown pollutant
Concentration Rep 1 Rep 2 Rep 3
0 6.59 6.14 7.19
1 4.91 5.03 6.25
2 5.89 7.44 6.11
5 4.51 6.75 5.69
11 4.52 5.52 3.71
25 2.54 1.76 0.21
50 0.10 0.00 0.91

Using drc the following results are obtained:

##
## Model fitted: Log-logistic (ED50 as parameter) (4 parms)
##
## Parameter estimates:
##
## Estimate Std. Error t-value p-value
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## b:(Intercept) 2.562908 1.052760 2.4345 0.0262286 *
## c:(Intercept) -0.007844 0.898266 -0.0087 0.9931343
## d:(Intercept) 6.133842 0.295012 20.7918 1.585e-13 ***
## e:(Intercept) 16.375463 3.341412 4.9008 0.0001349 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
##
## 0.8902487 (17 degrees of freedom)

From USEPA BMD (see Appendix B for detailed BMDP output) we obtain:

Parameter Estimate Std Error

g 6.135 0.266
v -6.165 0.924
k 16.445 3.057
n 2.544 0.949
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Using methods described above and the output from LL.4 fit we obtain the following Hill parameter estimates,
stndard errors and approximate 95% CIs.

Parameter Estimate SE LCL95 UCL95
g (background) 6.134 0.295 5.511 6.756
nu (max change) -6.142 1.007 -8.266 -4.018
k (ED50) 16.375 3.341 9.326 23.425
n (power) 2.563 1.053 0.342 4.784
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Appendix 1: Proof of Equivalence Between TOST and Confidence
Interval Inclusion Criterion

In section 2.1 it was stated that the TOST procedure is operationally identical to the procedure of declaring
equivalence only if the 1 − 2𝛼 confidence interval is completely contained within the equivalence interval
[−𝛿, +𝛿]. A formal proof of this assertion follows. Let ̂𝜃 be an estimator of a parameter 𝜃, with standard
error 𝑆𝐸, and suppose we wish to test whether 𝜃 lies within an equivalence margin (−𝛿, 𝛿) using the Two
One-Sided Tests (TOST) procedure at significance level 𝛼. We aim to prove the following equivalence:

TOST declares equivalence at level 𝛼 ⟺ CI1−2𝛼 ⊂ (−𝛿, 𝛿),

where CI1−2𝛼 denotes a (1 − 2𝛼) confidence interval for 𝜃.

Definitions

The hypotheses for TOST are:
𝐻01 ∶ 𝜃 ≤ −𝛿,
𝐻02 ∶ 𝜃 ≥ 𝛿.

We reject 𝐻01 if:

𝑇1 =
̂𝜃 + 𝛿
𝑆𝐸 > 𝑧1−𝛼,

and reject 𝐻02 if:

𝑇2 =
̂𝜃 − 𝛿
𝑆𝐸 < −𝑧1−𝛼.

TOST concludes equivalence if and only if both 𝐻01 and 𝐻02 are rejected. The (1 − 2𝛼) confidence interval
for 𝜃 is:

CI1−2𝛼 = [ ̂𝜃 − 𝑧1−𝛼𝑆𝐸, ̂𝜃 + 𝑧1−𝛼𝑆𝐸] .

Proof

6.3.0.1 (⇒) TOST ⇒ CI is contained within (−𝛿, 𝛿): Assume both 𝐻01 and 𝐻02 are rejected:

̂𝜃 + 𝛿
𝑆𝐸 > 𝑧1−𝛼 ⇒ ̂𝜃 > −𝛿 + 𝑧1−𝛼𝑆𝐸,

̂𝜃 − 𝛿
𝑆𝐸 < −𝑧1−𝛼 ⇒ ̂𝜃 < 𝛿 − 𝑧1−𝛼𝑆𝐸.

Then:
̂𝜃 − 𝑧1−𝛼𝑆𝐸 > −𝛿 and ̂𝜃 + 𝑧1−𝛼𝑆𝐸 < 𝛿,

which implies:
[ ̂𝜃 − 𝑧1−𝛼𝑆𝐸, ̂𝜃 + 𝑧1−𝛼𝑆𝐸] ⊂ (−𝛿, 𝛿).
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6.3.0.2 (⇐) CI ⊂ (−𝛿, 𝛿) ⇒ TOST: Assume:

̂𝜃 − 𝑧1−𝛼𝑆𝐸 > −𝛿 and ̂𝜃 + 𝑧1−𝛼𝑆𝐸 < 𝛿.

Then:
̂𝜃 + 𝛿 > 𝑧1−𝛼𝑆𝐸 ⇒

̂𝜃 + 𝛿
𝑆𝐸 > 𝑧1−𝛼 ⇒ Reject 𝐻01,

̂𝜃 − 𝛿 < −𝑧1−𝛼𝑆𝐸 ⇒
̂𝜃 − 𝛿
𝑆𝐸 < −𝑧1−𝛼 ⇒ Reject 𝐻02.

Thus, both null hypotheses are rejected and TOST declares equivalence.

Conclusion

TOST rejects both 𝐻01 and 𝐻02 ⟺ CI1−2𝛼 ⊂ (−𝛿, 𝛿).
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Appendix 2: Power for the One-sided Dunnett’s Test

Setup and Notation

We consider a one-way layout with one control group and 𝑘 treatment groups.
- Groups: 𝑖 = 0, 1, … , 𝑘, where 𝑖 = 0 is control.
- Sample sizes: 𝑛0, 𝑛1, … , 𝑛𝑘.
- Group means: ̄𝑌𝑖.
- Model:

𝑌𝑖𝑗
i.i.d.∼ 𝒩(𝜇𝑖, 𝜎2)

We want to test familywise one-sided hypotheses

𝐻0𝑖 ∶ 𝜇𝑖 ≤ 𝜇0 vs. 𝐻1𝑖 ∶ 𝜇𝑖 > 𝜇0

for increasing alternatives (reverse the sign for decreasing responses).

Test Statistic

The ANOVA mean square error is

𝑆2
𝑝𝑒 =

∑𝑘
𝑖=0 ∑𝑛𝑖

𝑗=1(𝑌𝑖𝑗 − ̄𝑌𝑖)2

𝑁 − (𝑘 + 1) , 𝑁 =
𝑘

∑
𝑖=0

𝑛𝑖

For treatment 𝑖, the difference from control is

̂𝜃𝑖 = ̄𝑌𝑖 − ̄𝑌0

Its estimated standard error is
SE( ̂𝜃𝑖) = 𝑆𝑝𝑒√ 1

𝑛𝑖
+ 1

𝑛0

Thus the one-sided Dunnett test statistic is

𝑇𝑖 =
̂𝜃𝑖

𝑆𝑝𝑒√ 1
𝑛𝑖

+ 1
𝑛0

Null Distribution

Under the global null 𝐻0 ∶ 𝜇0 = 𝜇1 = ⋯ = 𝜇𝑘, the vector

T = (𝑇1, … , 𝑇𝑘)
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follows a multivariate 𝑡 distribution with
- degrees of freedom 𝜈 = 𝑁 − (𝑘 + 1),
- correlation (for 𝑖 ≠ 𝑗)

𝜌𝑖𝑗 =
1

𝑛0

√( 1
𝑛0

+ 1
𝑛𝑖

) ( 1
𝑛0

+ 1
𝑛𝑗

)

Critical Value

Let 𝑐𝛼 be the one-sided critical value such that

Pr( max
𝑖=1,…,𝑘

𝑇𝑖 ≤ 𝑐𝛼 ∣ 𝐻0) = 1 − 𝛼

This value is obtained from the distribution of the maximum of correlated 𝑡-statistics (tabulated by Dunnett,
implemented in software such as multcomp in R).

Power Function

Let the true mean difference be 𝛿𝑖 = 𝜇𝑖 − 𝜇0. Then under 𝐻1,

𝑇𝑖 ∼ 𝑡𝜈(𝜆𝑖), 𝜆𝑖 = 𝛿𝑖
𝜎√1/𝑛𝑖 + 1/𝑛0

The familywise power is

Pr( max
𝑖=1,…,𝑘

𝑇𝑖 > 𝑐𝛼 ∣ 𝛿1, … , 𝛿𝑘)

where the joint distribution is multivariate noncentral 𝑡 with correlations as above.

Per-Comparison vs Familywise Power

• Per-comparison power:
For a specific treatment 𝑖, the probability of rejecting 𝐻0𝑖 when 𝛿𝑖 is true is

1 − 𝐹𝑡𝜈(𝜆𝑖)(𝑐𝛼)

where 𝐹𝑡𝜈(𝜆) is the CDF of a noncentral 𝑡 distribution.
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• Familywise power:
The probability of rejecting at least one false null is the multivariate probability

1 − Pr(𝑇1 ≤ 𝑐𝛼, … , 𝑇𝑘 ≤ 𝑐𝛼)

Sample-Size Targeting (Any-Pair Power)

Suppose all treatments have the same sample size 𝑛𝑖 = 𝑛 and the same effect size 𝛿. Then

𝜆 = 𝛿
𝜎√2/𝑛

= √ 𝑛
2

𝛿
𝜎

To achieve familywise power 1 − 𝛽, choose 𝑛 such that

Pr( max
𝑖=1,…,𝑘

𝑇𝑖 > 𝑐𝛼 ∣ 𝜆) ≥ 1 − 𝛽

This requires evaluating the multivariate noncentral 𝑡 distribution. Numerical solutions (root-finding over
𝑛) can be implemented in R using the mvtnorm or multcomp packages.

Bottom Line

• Both 𝑆2
𝑝𝑒 (ANOVA error mean square) and 𝑆2

𝑟𝑒𝑠 (residual variance from a fitted dose–response model)
are unbiased estimators of 𝜎2.

• With a correctly specified model,
Var(𝑆2

𝑟𝑒𝑠) < Var(𝑆2
𝑝𝑒)

• Therefore, model-based tests yield more precise estimates of variance and smaller standard errors for
contrasts { ̂𝜇(𝑑𝑖) − ̂𝜇(𝑑0)}, leading to higher power than the classical Dunnett procedure at the same
sample size.
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Appendix 3: Computation of BMDL using profile likelihood

Model and target level

- LL.4 mean function (log-dose on the x-axis):

𝑓(𝑥; 𝑏, 𝑐, 𝑑, 𝑒) = 𝑐 + 𝑑 − 𝑐
1 + exp(𝑏(log 𝑥 − log 𝑒)) , 𝑏 ≠ 0, 𝑒 > 0.

Let the benchmark be specified by a target response 𝑦⋆ that lies strictly between the asymptotes 𝑐 < 𝑦⋆ < 𝑑.
Two common specifications: Proportion (“extra/relative”) BMR. Pick 𝑞 ∈ (0, 1) and set

𝑦⋆ = 𝑐 + 𝑞(𝑑 − 𝑐).

Absolute-change BMR. Pick 𝑘 ∈ (0, 𝑑 − 𝑐) and set

𝑦⋆ = 𝑐 + 𝑘.

The BMD is the dose 𝑥⋆ solving 𝑓(𝑥⋆; 𝑏, 𝑐, 𝑑, 𝑒) = 𝑦⋆.

- Explicit solution for 𝑥⋆ Solve 𝑓(𝑥) = 𝑦⋆:

𝑑 − 𝑐
1 + exp(𝑏(log 𝑥 − log 𝑒)) = 𝑦⋆ − 𝑐 ⟹ exp(𝑏(log 𝑥 − log 𝑒)) = 𝑦⋆ − 𝑐

𝑑 − 𝑦⋆ .

Define
𝑠(𝑏, 𝑐, 𝑑; 𝑦⋆) ∶= 𝑦⋆ − 𝑐

𝑑 − 𝑦⋆ > 0.

Then
log 𝑥⋆ − log 𝑒 = 1

𝑏 log 𝑠 ⟹ 𝑥⋆ = 𝑒 𝑠1/𝑏. (1)

Two immediate corollaries: Proportion BMR. If 𝑦⋆ = 𝑐 + 𝑞(𝑑 − 𝑐), then

𝑠 = 𝑞
1 − 𝑞 ⇒ 𝑥⋆ = 𝑒 ( 𝑞

1 − 𝑞 )
1/𝑏

. (1a)

So the BMD depends only on 𝑏 and 𝑒. Absolute-change BMR. If 𝑦⋆ = 𝑐 + 𝑘, then

𝑠 = 𝑘
(𝑑 − 𝑐) − 𝑘 ⇒ 𝑥⋆ = 𝑒 ( 𝑘

(𝑑 − 𝑐) − 𝑘)
1/𝑏

, (1b)

so the BMD depends on 𝑏, 𝑒 and also 𝑐, 𝑑.

Below, denote the BMD by 𝜉 (i.e., 𝜉 ∶= 𝑥⋆).

- Profile likelihood for a derived quantity 𝜉 = 𝜙(𝜃)

Let 𝜃 = (𝑏, 𝑐, 𝑑, 𝑒) and 𝜙(𝜃) = 𝑥⋆ given by (1). With data {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 and a parametric error model (e.g.,

Normal with variance 𝜎2, or whatever family you fit in drc), the full log-likelihood is ℓ(𝜃, 𝜂) where 𝜂 collects
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any nuisance parameters (e.g., 𝜎2). Unconstrained MLE:

( ̂𝜃, ̂𝜂) = arg max
𝜃,𝜂

ℓ(𝜃, 𝜂), ̂ℓ = ℓ( ̂𝜃, ̂𝜂).

We want a CI for 𝜉 = 𝜙(𝜃), a smooth function of 𝜃. The profile log-likelihood for a proposed value 𝜉0 is

ℓ𝑝(𝜉0) = sup
𝜃,𝜂∶ 𝜙(𝜃)=𝜉0

ℓ(𝜃, 𝜂).

The LR statistic
𝑊(𝜉0) = 2( ̂ℓ − ℓ𝑝(𝜉0)) 𝑑−→ 𝜒2

1 (Wilks).

Thus, the one-sided lower 100(1 − 𝛼)% limit 𝜉𝐿 solves

𝑊(𝜉𝐿) = 𝜒2
1, 1−2𝛼, 𝜉𝐿 < ̂𝜉, ̂𝜉 = 𝜙( ̂𝜃).

(Upper limits are analogous.) All that remains is how to compute ℓ𝑝(𝜉0) efficiently. Two equivalent routes:

Reparameterize to eliminate the constraint

Proportion BMR (most common): Let 𝑟 = 𝑞
1 − 𝑞 (a constant). From (1a),

𝜉 = 𝑒 𝑟1/𝑏 ⟺ 𝑒 = ℎ(𝑏, 𝜉) ∶= 𝜉 𝑟−1/𝑏 = 𝜉 exp(−(log 𝑟)/𝑏). (2a)

Use (𝑏, 𝑐, 𝑑, 𝜉) as the parameter vector and replace 𝑒 everywhere by ℎ(𝑏, 𝜉). The fitted mean becomes

𝑓(𝑥; 𝑏, 𝑐, 𝑑, 𝜉) = 𝑐 + 𝑑 − 𝑐
1 + exp(𝑏{log 𝑥 − log ℎ(𝑏, 𝜉)}) .

For any fixed 𝜉 = 𝜉0, maximize ℓ(𝑏, 𝑐, 𝑑, 𝜉0, 𝜂) over 𝑏, 𝑐, 𝑑, 𝜂. That maximized value is ℓ𝑝(𝜉0). Useful partials
(for gradient-based solvers):

𝜕𝑒
𝜕𝑏 = 𝑒 log 𝑟

𝑏2 , 𝜕𝑒
𝜕𝜉 = 𝑒

𝜉 .

Absolute-change BMR: Here 𝑦⋆ = 𝑐 + 𝑘 and 𝑠 = 𝑘
(𝑑 − 𝑐) − 𝑘 . From (1b),

𝑒 = ℎ(𝑏, 𝑐, 𝑑, 𝜉) ∶= 𝜉 𝑠−1/𝑏. (2b)

Reparameterize as (𝑏, 𝑐, 𝑑, 𝜉) and substitute 𝑒 = ℎ(𝑏, 𝑐, 𝑑, 𝜉) in the mean. For fixed 𝜉0, maximize over 𝑏, 𝑐, 𝑑, 𝜂.
With 𝑠 = 𝑠(𝑐, 𝑑),

𝜕𝑒
𝜕𝑏 = 𝑒 log 𝑠

𝑏2 , 𝜕𝑒
𝜕𝑐 = − 𝑒 1

𝑏
1
𝑠 ⋅ 1

(𝑑 − 𝑐) − 𝑘 , 𝜕𝑒
𝜕𝑑 = + 𝑒 1

𝑏
1
𝑠 ⋅ 1

(𝑑 − 𝑐) − 𝑘 , 𝜕𝑒
𝜕𝜉 = 𝑒

𝜉 .

Constrained maximization via a Lagrangian

Keep (𝑏, 𝑐, 𝑑, 𝑒) and, for a given 𝜉0, solve

max
𝑏,𝑐,𝑑,𝑒,𝜂

ℓ(𝑏, 𝑐, 𝑑, 𝑒, 𝜂) s.t. 𝜙(𝑏, 𝑐, 𝑑, 𝑒) − 𝜉0 = 0.
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Form
𝐿(𝑏, 𝑐, 𝑑, 𝑒, 𝜂, 𝜆) = ℓ(𝑏, 𝑐, 𝑑, 𝑒, 𝜂) + 𝜆(𝜙(𝑏, 𝑐, 𝑑, 𝑒) − 𝜉0),

and solve the KKT system. Numerically this is often less stable than reparameterisation; for LL.4 the
closed-form substitution in reparameterisation is preferable.

- The likelihood-ratio CI Fit the unconstrained model to get ̂ℓ and ̂𝜃, hence ̂𝜉 = 𝜙( ̂𝜃). For a grid or a
root-finder over 𝜉0 (one side at a time): 1. Compute ℓ𝑝(𝜉0) by maximizing over the free parameters (Route
A recommended). 2. Compute 𝑊(𝜉0) = 2{ ̂ℓ − ℓ𝑝(𝜉0)}. The lower one-sided 100(1 − 𝛼)% BMDL is the
smallest 𝜉0 < ̂𝜉 with

𝑊(𝜉0) = 𝜒2
1, 1−2𝛼.

(Upper works analogously on 𝜉0 > ̂𝜉.)

By Wilks’ theorem, the 𝜒2
1 cutoff is valid; profiling in 𝜉 is parameterization-invariant.

- Practical notes (LL.4 and drc) - Monotonicity / direction. The formulae hold regardless of the
sign of 𝑏; the exponent 1/𝑏 handles increasing vs decreasing curves automatically. Ensure 0 < 𝑞 < 1 (or
0 < 𝑘 < 𝑑 − 𝑐) so 𝑦⋆ is between 𝑐 and 𝑑.

• Unconstrained Replacing 𝑒 with ℎ(⋅) removes the constraint; you maximize an unconstrained likeli-
hood in (𝑏, 𝑐, 𝑑) at each 𝜉0.

• Small-sample caution. LR cutoffs are asymptotic. With very small 𝑛, LR CIs can be unreliable.

- Summary formulas General:

𝑥⋆(𝜃) = 𝑒 ( 𝑦⋆ − 𝑐
𝑑 − 𝑦⋆ )

1/𝑏
.

Proportion BMR 𝑦⋆ = 𝑐 + 𝑞(𝑑 − 𝑐):

𝑥⋆ = 𝑒 ( 𝑞
1 − 𝑞 )

1/𝑏
, 𝑒 = 𝜉 ( 𝑞

1 − 𝑞 )
−1/𝑏

.

Absolute-change BMR 𝑦⋆ = 𝑐 + 𝑘:

𝑥⋆ = 𝑒 ( 𝑘
(𝑑 − 𝑐) − 𝑘)

1/𝑏
, 𝑒 = 𝜉 ( 𝑘

(𝑑 − 𝑐) − 𝑘)
−1/𝑏

.

𝑊(𝜉0) = 2 [ ̂ℓ − ℓ𝑝(𝜉0)] 𝑑∼ 𝜒2
1.
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Example

We simulate data and fit the LL.4 model by least squares (equivalent to MLE under Normal errors with 𝜎2

profiled out), computes ̂𝜉 at a specified BMR 𝑞, and then profiles ℓ𝑝(𝜉0) over (𝑏, 𝑐, 𝑑) with 𝑒 eliminated via
𝑒 = ℎ(𝑏, 𝜉0). NB: The simulated data can be replaced with your own (𝑥, 𝑦).
# LL.4 mean
f_ll4 <- function(x, b, c, d, e) {

c + (d - c) / (1 + exp(b * (log(x) - log(e))))
}

# RSS-based negative log-likelihood (up to additive constant) with sigma profiled out:
# nll(theta) = n/2 * log(RSS/n), so maximizing ll <=> minimizing RSS.
nll_from_rss <- function(residuals) {

n <- length(residuals)
rss <- sum(residuals^2)
0.5 * n * log(rss / n)

}

# Unconstrained fit: parameters are (b, c, d, loge)
fit_unconstrained <- function(x, y, par0 = c(b=1, c=min(y), d=max(y), loge=log(median(x)))) {

obj <- function(p) {
b <- p[1]; c <- p[2]; d <- p[3]; e <- exp(p[4])
mu <- f_ll4(x, b, c, d, e)
nll_from_rss(y - mu)

}
opt <- optim(par0, obj, method = "BFGS", control = list(reltol = 1e-10))
c(opt$par, value = opt$value, convergence = opt$convergence)

}

# Eliminate e for PROPORTION BMR (q in (0,1))
# e = h(b, xi) = xi * r^(-1/b), where r = q/(1-q)
h_prop <- function(b, xi, q) {

r <- q / (1 - q)
xi * r^(-1 / b)

}

# Profile nll at fixed xi0, optimizing over (b, c, d)
profile_nll_prop <- function(x, y, xi0, q, par0 = c(b=1, c=min(y), d=max(y))) {

obj <- function(p) {
b <- p[1]; c <- p[2]; d <- p[3]
e <- h_prop(b, xi0, q)
mu <- f_ll4(x, b, c, d, e)
nll_from_rss(y - mu)

}
# light boxing for stability on (d - c) > 0:
obj_boxed <- function(p_raw) {

# reparam: c = a, d = a + exp(t) to enforce d > c
b <- p_raw[1]
a <- p_raw[2]
t <- p_raw[3]
c <- a
d <- a + exp(t)
p <- c(b, c, d)
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obj(p)
}
# initial raw params
b0 <- par0[1]; a0 <- par0[2]; t0 <- log(max(1e-6, par0[3]-par0[2]))
p0 <- c(b0, a0, t0)
opt <- optim(p0, obj_boxed, method = "BFGS", control = list(reltol = 1e-10))
list(opt = opt, nll = opt$value)

}

# LL.4 mean
f_ll4 <- function(x, b, c, d, e) {

c + (d - c) / (1 + exp(b * (log(x) - log(e))))
}

# RSS-based negative log-likelihood (up to additive constant) with sigma profiled out:
# nll(theta) = n/2 * log(RSS/n), so maximizing ll <=> minimizing RSS.
nll_from_rss <- function(residuals) {

n <- length(residuals)
rss <- sum(residuals^2)
0.5 * n * log(rss / n)

}

# Unconstrained fit: parameters are (b, c, d, loge)
fit_unconstrained <- function(x, y, par0 = c(b=1, c=min(y), d=max(y), loge=log(median(x)))) {

obj <- function(p) {
b <- p[1]; c <- p[2]; d <- p[3]; e <- exp(p[4])
mu <- f_ll4(x, b, c, d, e)
nll_from_rss(y - mu)

}
opt <- optim(par0, obj, method = "BFGS", control = list(reltol = 1e-10))
c(opt$par, value = opt$value, convergence = opt$convergence)

}

# Eliminate e for PROPORTION BMR (q in (0,1))
# e = h(b, xi) = xi * r^(-1/b), where r = q/(1-q)
h_prop <- function(b, xi, q) {

r <- q / (1 - q)
xi * r^(-1 / b)

}

# Profile nll at fixed xi0, optimizing over (b, c, d)
profile_nll_prop <- function(x, y, xi0, q, par0 = c(b=1, c=min(y), d=max(y))) {

obj <- function(p) {
b <- p[1]; c <- p[2]; d <- p[3]
e <- h_prop(b, xi0, q)
mu <- f_ll4(x, b, c, d, e)
nll_from_rss(y - mu)

}
# light boxing for stability on (d - c) > 0:
obj_boxed <- function(p_raw) {

# reparam: c = a, d = a + exp(t) to enforce d > c
b <- p_raw[1]
a <- p_raw[2]
t <- p_raw[3]
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c <- a
d <- a + exp(t)
p <- c(b, c, d)
obj(p)

}
# initial raw params
b0 <- par0[1]; a0 <- par0[2]; t0 <- log(max(1e-6, par0[3]-par0[2]))
p0 <- c(b0, a0, t0)
opt <- optim(p0, obj_boxed, method = "BFGS", control = list(reltol = 1e-10))
list(opt = opt, nll = opt$value)

}

# Simulate a decreasing LL.4 curve (b > 0)
n <- 40
x <- sort(exp(seq(log(0.5), log(200), length.out = n)))

bT <- 2.0; cT <- 10; dT <- 100; eT <- 30
mu <- f_ll4(x, bT, cT, dT, eT)
y <- mu + rnorm(n, sd = 5)

plot(x, y, pch = 16, xlab = "Dose (x)", ylab = "Response (y)")
curve(f_ll4(x, bT, cT, dT, eT), ,col="red",add = TRUE, lwd = 2)

library(drc)
load("fisher.Rdata")
x <- fisher.dat$dose; y <- fisher.dat$y
plot(x, y, pch = 16, xlab = "Dose (x)", ylab = "Response (y)")
p<-as.numeric(coef(drm(y ~x,fct=LL.4())))
curve(f_ll4(x,p[1],p[2],p[3],p[4] ), ,col="red",add = TRUE, lwd = 2)
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# Unconstrained fit
fit0 <- fit_unconstrained(x, y)
b.h <- fit0[1]; c.h <- fit0[2]; d.h <- fit0[3]; e.h <- exp(fit0[4])
nll0 <- fit0["value"]

cat(sprintf("Unconstrained fit (b, c, d, e-hat) = (%.3f, %.3f, %.3f, %.3f)\n",
b.h, c.h, d.h, e.h))

## Unconstrained fit (b, c, d, e-hat) = (2.544, -0.030, 6.135, 16.445)

# Choose a proportion BMR
q <- 0.10
# BMD (xi-hat) from fitted parameters (proportion case)
xi_hat <- e.h * (q/(1-q))^(1 / b.h)
xi_hat

## loge
## 6.933244

alpha <- 0.05 # one-sided lower 95%
crit <- qchisq(1 - 2*alpha, df = 1)

# Profile over xi0 on a grid to find lower limit
# Work below xi_hat
grid <- sort(unique(c(
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seq(max(1e-4, 0.1*xi_hat), xi_hat, length.out = 60),
xi_hat

)))

prof_vals <- numeric(length(grid))
for (i in seq_along(grid)) {

xi0 <- grid[i]
# Warm start near unconstrained
par0 <- c(b = b.h, c = c.h, d = d.h)
pr <- profile_nll_prop(x, y, xi0, q, par0 = par0)
prof_vals[i] <- pr$nll

}

W <- 2 * (nll0 - prof_vals)

# Find smallest xi0 with W >= crit (on lower side)
idx <- which(W >= crit & grid <= xi_hat)
if (length(idx)) {

bmdl <- min(grid[idx])
} else {

bmdl <- NA_real_
}

list(
xi_hat = xi_hat,
BMDL_lower_1s = bmdl,
LR_crit = crit

)

## $xi_hat
## loge
## 6.933244
##
## $BMDL_lower_1s
## [1] NA
##
## $LR_crit
## [1] 2.705543

plot(grid, W, type = "l", xlab = expression(xi[0]), ylab = expression(W(xi[0])),
main = "LR profile for BMD (proportion BMR)")

abline(h = crit, lty = 2)
abline(v = xi_hat, lty = 3)
if (!is.na(bmdl)) abline(v = bmdl, col = 2, lty = 2)
legend("topleft",

legend = c("W", "chi^2_1 cutoff", "xi-hat", "BMDL (lower 1-sided)"),
lty = c(1,2,3,2), col = c(1,1,1,2), bty = "n")

source("my_bmd_profile_ll.R")
out <- bmd_profile_CI(fisher.dat, bmr = 0.1, type = "extra", alpha = 0.05, verbose = TRUE)

## Check: LR(BMD_hat) � -0.0007 (should be ~0)
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list(
BMD_hat = out$BMD_hat,
BMDL_lower_1s = out$BMDL,
BMDL_upper_1s = out$BMDU,
AIC = AIC(out$fit),
LR_crit = crit

)

## $BMD_hat
## [1] 6.948093
##
## $BMDL_lower_1s
## [1] 3.800303
##
## $BMDL_upper_1s
## [1] 10.49865
##
## $AIC
## [1] 60.27524
##
## $LR_crit
## [1] 2.705543

source("plot_profile_gg.R")
plot_lr_profile_gg(out, dat = fisher.dat)
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R code for finding BMDL by profile likelihood

# install.packages("drc") # if needed
library(drc)
library(ggplot2)

# ---- Model definition (LL.4 as in drc) ----
LL4_fun <- function(x, b, c, d, e) {

# LL.4 parameterization used by drc:
# f(x) = c + (d - c) / (1 + (x/e)^b)
c + (d - c) / (1 + (x / e)^b)

}

# ---- Unconstrained fit with drc ----
fit_LL4 <- function(dat) {

# dat must have columns: dose, y
stopifnot(all(c("dose", "y") %in% names(dat)))
drm(y ~ dose, data = dat, fct = LL.4(names = c("b","c","d","e")))

}

# ---- Unconstrained log-likelihood (Gaussian with sigma^2 profiled out) ----
loglik_gaussian_profiled <- function(residuals) {

n <- length(residuals)
RSS <- sum(residuals^2)
# MLE sigma^2 = RSS/n; profiled loglik (up to an additive constant) is:
# l = -n/2 * [1 + log(2*pi*RSS/n)]
-0.5 * n * (1 + log(2 * pi * RSS / n))

}

# ---- BMD from parameter vector (extra or additional risk) ----

bmd_from_pars <- function(pars, bmr, type = c("extra","additional"), add_amount = NULL) {
type <- match.arg(type)
pars <- setNames(as.numeric(pars), sub(":.*","", names(pars))) # normalize names to b,c,d,e
b <- pars["b"]; c <- pars["c"]; d <- pars["d"]; e <- pars["e"]

# effect fraction r_eff in (0,1)
if (type == "extra") {

r_eff <- bmr
} else {

if (is.null(add_amount)) stop("For type='additional', provide add_amount (same units as response).")
r_eff <- add_amount / (d - c)

}
if (!(is.finite(r_eff) && r_eff > 0 && r_eff < 1)) {

stop("BMR mapping produced r not in (0,1). Check bmr/add_amount and (d-c).")
}

# Direction-aware mapping to g-target:
# decreasing (b>0): effect = 1 - g => g_target = 1 - r_eff
# increasing (b<0): effect = g => g_target = r_eff
g_target <- if (b > 0) 1 - r_eff else r_eff

# Invert g(x) = 1 / (1 + (x/e)^b) for x:
# x = e * ((1 - g)/g)^(1/b)
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e * ((1 - g_target) / g_target)^(1 / b)
}

# ---- Constrained re-fit for a given candidate BMD (d0) via parameter substitution ----
# Key trick: enforce the constraint by solving for 'e' in terms of (b, c, d, d0, r),
# so the optimizer only searches over (b, c, d). This avoids a constrained optimizer.
# ---- Constrained re-fit for a given candidate BMD (d0) via parameter substitution ----
# Enforce the benchmark by solving for 'e' so that g(d0) = g_target
constrained_fit_loglik <- function(dat, d0, bmr, type = c("extra","additional"), add_amount = NULL,

start_pars, penalty_big = 1e9) {
type <- match.arg(type)
x <- dat$dose; y <- dat$y

# starting values for (b,c,d) from the unconstrained fit:
par0 <- c(b = start_pars["b"], c = start_pars["c"], d = start_pars["d"])
if (any(!is.finite(par0))) stop("Non-finite starting values for (b,c,d); check upstream fit.")

obj <- function(par) {
b <- par[1]; c <- par[2]; d <- par[3]
if (!is.finite(b) || !is.finite(c) || !is.finite(d)) return(penalty_big)
if (d <= c) return(penalty_big)

# effect fraction r_eff
r_eff <- if (type == "extra") bmr else add_amount / (d - c)
if (!(is.finite(r_eff) && r_eff > 0 && r_eff < 1)) return(penalty_big)

# direction-aware target for g at the benchmark
g_target <- if (b > 0) 1 - r_eff else r_eff
if (!(is.finite(g_target) && g_target > 0 && g_target < 1)) return(penalty_big)
if (abs(b) < 1e-6) return(penalty_big)

# Solve 1/(1 + (d0/e)^b) = g_target � e = d0 * (g_target/(1 - g_target))^(1/b)
e <- d0 * (g_target / (1 - g_target))^(1 / b)
if (!is.finite(e) || e <= 0) return(penalty_big)

mu <- LL4_fun(x, b, c, d, e)
res <- y - mu
-loglik_gaussian_profiled(res)

}

opt <- optim(par = par0, fn = obj, method = "L-BFGS-B",
control = list(maxit = 1000))

if (opt$convergence != 0) warning("Constrained optimization may not have fully converged (code=",
opt$convergence, ").")

# Reconstruct best (b,c,d,e) with the same mapping
b <- opt$par[1]; c <- opt$par[2]; d <- opt$par[3]
r_eff <- if (type == "extra") bmr else add_amount / (d - c)
g_target <- if (b > 0) 1 - r_eff else r_eff
e <- d0 * (g_target / (1 - g_target))^(1 / b)
mu <- LL4_fun(x, b, c, d, e)
res <- y - mu
ll <- loglik_gaussian_profiled(res)
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list(par = c(b = b, c = c, d = d, e = e), logLik = ll, value = opt$value)
}

# ---- Profile-likelihood scan & BMDL solver ----
bmd_profile_CI <- function(dat, bmr = 0.1, type = c("extra","additional"),

add_amount = NULL, alpha = 0.05,
grid_n = 80, expand_low = 1e-3, expand_high = 1e3,
verbose = TRUE) {

type <- match.arg(type)

# 1) Unconstrained fit
fit <- fit_LL4(dat)
phat <- coef(fit) # names: b,c,d,e
nm <- sub(":.*", "", names(phat)) # strip suffixes like ":(Intercept)"
phat <- setNames(as.numeric(phat), nm)
yhat <- fitted(fit)
ll_uncon <- loglik_gaussian_profiled(dat$y - yhat)

# 2) BMD at MLE (closed form)
bmd_hat <- bmd_from_pars(phat, bmr = bmr, type = type, add_amount = add_amount)

# 3) LR threshold (EPA one-sided; reduce log-lik by chi^2_�{1,1-2})
# => LR(d0) = 2[ell_uncon - ell_constr(d0)] must equal qchisq(1-2*alpha, 1)
q <- qchisq(p = 1 - 2 * alpha, df = 1)

# helper: LR at candidate d0
LR_at <- function(d0) {

cf <- constrained_fit_loglik(dat, d0 = d0, bmr = bmr, type = type,
add_amount = add_amount, start_pars = phat)

LR <- 2 * (ll_uncon - cf$logLik)
c(LR = LR, logLik = cf$logLik)

}

# ---- Upper crossing (BMDU): bracket to the RIGHT of bmd_hat and solve LR(d) = q ----
BMDU <- NA_real_

hi <- bmd_hat # use the existing lower-case variable
up <- hi
LR_up <- LR_at(up)["LR"] # take only the LR scalar
tries <- 0L
expand <- 2.5
max_tries <- 30L

# Expand right until LR(up) >= q (or give up)
while (is.finite(LR_up) && LR_up < q && tries < max_tries) {

up <- up * expand
LR_up <- LR_at(up)["LR"]
tries <- tries + 1L

}

if (is.finite(LR_up) && LR_up >= q) {
# Root-find on log-scale: solve LR(exp(u)) = q on [log(hi), log(up)]
f_u2 <- function(u) LR_at(exp(u))["LR"] - q
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root2 <- uniroot(f_u2, lower = log(hi), upper = log(up), tol = 1e-8, maxiter = 200L)
BMDU <- exp(root2$root)

} else if (isTRUE(verbose)) {
warning("Could not bracket the upper LR crossing; returning NA for BMDU.")

}

# 4) Find the lower one-sided bound (BMDL): search left of bmd_hat
# Start from a wide bracket on the *dose* axis (log scale helps in practice).
lo <- max(min(dat$dose[dat$dose>0], na.rm=TRUE) * expand_low, .Machine$double.eps)
hi <- bmd_hat

# Ensure LR(lo) > q and LR(hi) = 0 (approximately)
LR_hi <- LR_at(hi)["LR"]
if (verbose) message(sprintf("Check: LR(BMD_hat) � %.4f (should be ~0)", LR_hi))
# Expand search to the left until LR(lo) > q or we hit numerical floor
LR_lo <- LR_at(lo)["LR"]
expand <- 2.5
tries <- 0
while (is.finite(LR_lo) && LR_lo <= q && lo > .Machine$double.eps && tries < 30) {

lo <- lo / expand
LR_lo <- LR_at(lo)["LR"]; tries <- tries + 1

}

bmdl <- NA_real_
if (is.finite(LR_lo) && LR_lo > q) {

# Root find LR(d0) - q = 0 on [lo, hi]
froot <- function(d0) LR_at(d0)["LR"] - q
# guard: uniroot needs finite values
f_lo <- froot(lo); f_hi <- froot(hi)
if (is.finite(f_lo) && is.finite(f_hi) && sign(f_lo) != sign(f_hi)) {

bmdl <- uniroot(froot, lower = lo, upper = hi, tol = 1e-6)$root
} else {

warning("Could not bracket the LR root cleanly; returning NA for BMDL.")
}

} else {
warning("LR at very small dose did not exceed the cutoff; BMDL may be below explored range.")

}

list(
alpha = alpha,
LR_at = LR_at,
fit = fit,
pars_hat = phat,
logLik_uncon = ll_uncon,
BMR = bmr,
type = type,
BMD_hat = as.numeric(bmd_hat),
BMDL = as.numeric(bmdl),
BMDU = BMDU,
cutoff = q,
note = sprintf("One-sided BMDL uses LR = qchisq(1-2*alpha, df=1). For alpha=%.2f, cutoff ~ %.4f.", alpha,
q)

)
}
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Appendix 4: USEPA BMDP output for Worked Example in § 4

U.S. Environmental Protection Agency. (2025). BMDS Online (25.1; pybmds 25.1; bmdscore 25.1) [Soft-
ware]. Available from https://bmdsonline.epa.gov. Accessed August 07, 2025.
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Fisher Table_1 
Report Generated: 2025-Sep-22 04:09 UTC 
Analysis URL: View / Update 
BMDS Online Version: 25.1 (pybmds 25.1; bmdscore 25.1) 

Session for Dataset #1 
Dataset 
Name: Dataset #1 
Dose Response 

0 6.59 

1 4.91 

2 5.89 

5 4.51 

11 4.52 

25 2.54 

50 0.1 

0 6.14 

1 5.03 

2 7.44 

5 6.75 

11 5.52 

25 1.76 

50 0 

0 7.19 

1 6.25 

2 6.11 

5 5.69 

11 3.71 

25 0.21 

50 0.91 

Test 1 Dose Response: <0.0001 

Test 2 Homogeneity of Variance: 0.7088 

Test 3 Variance Model Selection: 0.7088 

Settings 
Setting Value 

BMR 1.0 Standard Deviation 

Distribution Normal + Constant variance 

Adverse Direction Down (↓) 

Maximum Polynomial Degree 3 

Confidence Level (one sided) 0.95 

Maximum Likelihood Approach 
Model BMDL BMD BMDU P-Value AIC Scaled 

Residual 

at 

Control 

Scaled 

Residual 

near 

BMD 

Recommendation and 

Notes 

Hilla 3.868 7.787 11.891 0.159 60.274 1.092 -0.434 Recommended - 

Lowest AIC 

Control stdev. fit > 1.5 
a BMDS recommended best fitting model 



 
 

Individual Model Results 

Hill Model 

 
 



 
 
          Hill Model           
══════════════════════════════ 
 
Version: pybmds 25.1 (bmdscore 25.1) 
 
Input Summary: 
╒══════════════════════════════╤════════════════════════════╕ 
│ BMR                          │ 1.0 Standard Deviation     │ 
│ Distribution                 │ Normal + Constant variance │ 
│ Modeling Direction           │ Down (↓)                   │ 
│ Confidence Level (one sided) │ 0.95                       │ 
│ Modeling Approach            │ MLE                        │ 
╘══════════════════════════════╧════════════════════════════╛ 
 
Parameter Settings: 
╒═════════════╤═══════════╤═══════╤═══════╕ 
│ Parameter   │   Initial │   Min │   Max │ 
╞═════════════╪═══════════╪═══════╪═══════╡ 
│ g           │         0 │  -100 │   100 │ 
│ v           │         0 │  -100 │   100 │ 
│ k           │         0 │     0 │     5 │ 
│ n           │         1 │     1 │    18 │ 
│ alpha       │         0 │   -18 │    18 │ 
╘═════════════╧═══════════╧═══════╧═══════╛ 
 
Modeling Summary: 
╒════════════════╤════════════╕ 
│ BMD            │   7.7873   │ 
│ BMDL           │   3.86756  │ 
│ BMDU           │  11.8912   │ 
│ AIC            │  60.2745   │ 
│ Log-Likelihood │ -25.1372   │ 
│ P-Value        │   0.159089 │ 
│ Model d.f.     │   3        │ 
╘════════════════╧════════════╛ 
 
Model Parameters: 
╒════════════╤════════════╤════════════╤═════════════╕ 



│ Variable   │   Estimate │ On Bound   │   Std Error │ 
╞════════════╪════════════╪════════════╪═════════════╡ 
│ g          │   6.13508  │ no         │    0.266171 │ 
│ v          │  -6.1654   │ no         │    0.923721 │ 
│ k          │  16.4454   │ no         │    3.05689  │ 
│ n          │   2.54393  │ no         │    0.948536 │ 
│ alpha      │   0.641559 │ no         │    0.126998 │ 
╘════════════╧════════════╧════════════╧═════════════╛ 
 
Goodness of Fit: 
╒════════╤═════╤═══════════════╤═════════════════════╤═══════════════════╕ 
│   Dose │   N │   Sample Mean │   Model Fitted Mean │   Scaled Residual │ 
╞════════╪═════╪═══════════════╪═════════════════════╪═══════════════════╡ 
│      0 │   3 │      6.64     │             6.13508 │         1.09186   │ 
│      1 │   3 │      5.39667  │             6.13011 │        -1.58602   │ 
│      2 │   3 │      6.48     │             6.10622 │         0.808268  │ 
│      5 │   3 │      5.65     │             5.8506  │        -0.433783  │ 
│     11 │   3 │      4.58333  │             4.50472 │         0.169992  │ 
│     25 │   3 │      1.50333  │             1.54964 │        -0.10014   │ 
│     50 │   3 │      0.336667 │             0.31363 │         0.0498146 │ 
╘════════╧═════╧═══════════════╧═════════════════════╧═══════════════════╛ 
╒════════╤═════╤═════════════╤═══════════════════╕ 
│   Dose │   N │   Sample SD │   Model Fitted SD │ 
╞════════╪═════╪═════════════╪═══════════════════╡ 
│      0 │   3 │    0.526783 │          0.800974 │ 
│      1 │   3 │    0.74144  │          0.800974 │ 
│      2 │   3 │    0.83863  │          0.800974 │ 
│      5 │   3 │    1.12054  │          0.800974 │ 
│     11 │   3 │    0.906661 │          0.800974 │ 
│     25 │   3 │    1.18602  │          0.800974 │ 
│     50 │   3 │    0.499032 │          0.800974 │ 
╘════════╧═════╧═════════════╧═══════════════════╛ 
 
Likelihoods: 
╒═════════╤══════════════════╤════════════╤══════════╕ 
│ Model   │   Log-Likelihood │   # Params │      AIC │ 
╞═════════╪══════════════════╪════════════╪══════════╡ 
│ A1      │         -22.5473 │          8 │  61.0946 │ 
│ A2      │         -20.666  │         14 │  69.332  │ 
│ A3      │         -22.5473 │          8 │  61.0946 │ 
│ fitted  │         -25.1372 │          5 │  60.2745 │ 
│ reduced │         -48.1872 │          2 │ 100.374  │ 
╘═════════╧══════════════════╧════════════╧══════════╛ 
 
Tests of Mean and Variance Fits: 
╒════════╤══════════════════════════════╤═════════════╤═════════════╕ 
│ Name   │   -2 * Log(Likelihood Ratio) │   Test d.f. │     P-Value │ 
╞════════╪══════════════════════════════╪═════════════╪═════════════╡ 
│ Test 1 │                     55.0424  │          12 │ 1.77855e-07 │ 
│ Test 2 │                      3.76261 │           6 │ 0.708765    │ 
│ Test 3 │                      3.76261 │           6 │ 0.708765    │ 
│ Test 4 │                      5.17989 │           3 │ 0.159089    │ 
╘════════╧══════════════════════════════╧═════════════╧═════════════╛ 
Test 1: Test the null hypothesis that responses and variances don't differ among dose levels 
(A2 vs R).  If this test fails to reject the null hypothesis (p-value > 0.05), there may not be 
a dose-response. 
 
Test 2: Test the null hypothesis that variances are homogenous (A1 vs A2).  If this test fails to 
reject the null hypothesis (p-value > 0.05), the simpler constant variance model may be appropriate. 
 
Test 3: Test the null hypothesis that the variances are adequately modeled (A3 vs A2). If this test 
fails to reject the null hypothesis (p-value > 0.05), it may be inferred that the variances have 
been modeled appropriately. 
 
Test 4: Test the null hypothesis that the model for the mean fits the data (Fitted vs A3). If this 
test fails to reject the null hypothesis (p-value > 0.1), the user has support for use of the 
selected model. 
 



Appendix 5: Comparing error estimates from categorical and con-
tinuous dose-response modelling

Setup

Let doses be 𝑥𝑗 for 𝑗 = 1, … , 𝑘 with 𝑛𝑗 ≥ 2 replicates and total 𝑁 = ∑𝑘
𝑗=1 𝑛𝑗. Observations satisfy

𝑦𝑖𝑗 = 𝜇(𝑥𝑗) + 𝜀𝑖𝑗, 𝔼[𝜀𝑖𝑗] = 0, Var(𝜀𝑖𝑗) = 𝜎2, 𝑖 = 1, … , 𝑛𝑗.

Define group means ̄𝑦⋅𝑗 = 1
𝑛𝑗

∑𝑛𝑗
𝑖=1 𝑦𝑖𝑗. Fit a parametric dose‑response mean 𝜂(𝑥; 𝜃) with 𝑝 estimable param-

eters and denote ̂𝜂𝑗 = 𝜂(𝑥𝑗; ̂𝜃).

Sums of squares and mean squares

Pure (within‑dose) error:

𝑆𝑆pe =
𝑘

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦⋅𝑗)
2, 𝑑𝑓pe = 𝑁 − 𝑘, 𝑀𝑆pe = 𝑆𝑆pe

𝑁 − 𝑘.

Model residuals:

𝑆𝑆res =
𝑘

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̂𝜂𝑗)
2, 𝑑𝑓res = 𝑁 − 𝑝, 𝑀𝑆res = 𝑆𝑆res

𝑁 − 𝑝.

Lack‑of‑fit decomposition (using 𝑦𝑖𝑗 − ̂𝜂𝑗 = (𝑦𝑖𝑗 − ̄𝑦⋅𝑗) + ( ̄𝑦⋅𝑗 − ̂𝜂𝑗) and ∑𝑖(𝑦𝑖𝑗 − ̄𝑦⋅𝑗) = 0):

𝑆𝑆res = 𝑆𝑆pe + 𝑆𝑆lof , 𝑆𝑆lof =
𝑘

∑
𝑗=1

𝑛𝑗( ̄𝑦⋅𝑗 − ̂𝜂𝑗)
2 ≥ 0 .

Therefore

𝑀𝑆res = 𝑁 − 𝑘
𝑁 − 𝑝 𝑀𝑆pe + 𝑆𝑆lof

𝑁 − 𝑝 .

Consequences

• Under homoscedasticity and a correct mean model, 𝔼[𝑀𝑆pe] = 𝔼[𝑀𝑆res] = 𝜎2 (both unbiased for 𝜎2).
• A standard lack‑of‑fit 𝐹 -test compares

𝐹 = 𝑆𝑆lof/(𝑘 − 𝑝)
𝑆𝑆pe/(𝑁 − 𝑘) ≈ 𝐹𝑘−𝑝, 𝑁−𝑘

under the null that the parametric mean is correct (requires replication at doses).
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With replication at each dose

The pure‑error estimator uses only within‑dose variation and is model‑agnostic:

𝜎̂2
pe = 𝑀𝑆pe, 𝔼[𝜎̂2

pe] = 𝜎2 regardless of mean‑model correctness.

If the parametric curve is correct, 𝜎̂2
model = 𝑀𝑆res is also unbiased and typically more precise:

Var(𝑀𝑆pe) = 2𝜎4

𝑁 − 𝑘, Var(𝑀𝑆res) = 2𝜎4

𝑁 − 𝑝, (𝑁 − 𝑝 > 𝑁 − 𝑘 if 𝑝 < 𝑘).

If the mean is mis-specified, 𝑆𝑆lof > 0 inflates 𝑀𝑆res.

Equality conditions (numerical equality vs expectation)

• Equal in expectation: If the D–R model is correct, 𝔼[𝑀𝑆pe] = 𝔼[𝑀𝑆res] = 𝜎2.
• Exactly equal in‑sample: Only if ̂𝜂𝑗 = ̄𝑦⋅𝑗 for all 𝑗 (i.e., the saturated ANOVA treatment‑means

model, or by chance). Otherwise 𝑆𝑆lof > 0 and 𝑀𝑆res ≠ 𝑀𝑆pe.

Clarification

When a “correct” model passes through the group means, that corresponds to the saturated one‑way
ANOVA model: ̂𝜂𝑗 = ̄𝑦⋅𝑗 for all 𝑗. In this case,

𝑆𝑆lof = 0, 𝑆𝑆res = 𝑆𝑆pe, 𝑀𝑆res = 𝑀𝑆pe (numerically).

For any constrained parametric D–R family (e.g., log‑logistic, Hill), ̂𝜂𝑗 generally differs from ̄𝑦⋅𝑗, so 𝑆𝑆lof

is typically nonzero and the MSEs differ in the sample—despite both being unbiased if the family is truly
correct in expectation.

Consider the mathematical relationship between the mean squared error (MSE) derived from a fitted
dose–response (D–R) model and the MSE obtained from a one–way ANOVA in which the dose
levels are treated as categorical treatments (with replication at each dose): We assume independent,
homoscedastic errors across observations and replication at each dose.

MSE comparison

We investigate the mathematical relationship between the mean squared error (MSE) derived from a
fitted dose–response (D–R) model and the MSE obtained from a one–way ANOVA in which the dose
levels are treated as categorical treatments (with replication at each dose).
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Notation and setup

Let doses be 𝑥𝑗 for 𝑗 = 1, … , 𝑘, with 𝑛𝑗 ≥ 2 replicates at each dose and total 𝑁 = ∑𝑘
𝑗=1 𝑛𝑗. We observe

𝑦𝑖𝑗 = 𝜇(𝑥𝑗) + 𝜀𝑖𝑗, 𝜀𝑖𝑗
iid∼ (0, 𝜎2), 𝑖 = 1, … , 𝑛𝑗.

Define group means ̄𝑦⋅𝑗 = 1
𝑛𝑗

∑𝑛𝑗
𝑖=1 𝑦𝑖𝑗.

We fit a parametric D–R mean function 𝜂(𝑥; 𝜃) with 𝑝 estimable parameters and denote ̂𝜂𝑗 ∶= 𝜂(𝑥𝑗; ̂𝜃).

Sums of Squares and Mean Squares

Pure Error (within–dose)

The pure–error (within–group) sum of squares and its MSE are

𝑆𝑆pe =
𝑘

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦⋅𝑗)
2, dfpe = 𝑁 − 𝑘, 𝑀𝑆pe = 𝑆𝑆pe

𝑁 − 𝑘.

Model Residual and Lack–of–Fit

The model residual sum of squares and MSE are

𝑆𝑆res =
𝑘

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̂𝜂𝑗)
2, dfres = 𝑁 − 𝑝, 𝑀𝑆res = 𝑆𝑆res

𝑁 − 𝑝.

Using the identity
𝑦𝑖𝑗 − ̂𝜂𝑗 = (𝑦𝑖𝑗 − ̄𝑦⋅𝑗) + ( ̄𝑦⋅𝑗 − ̂𝜂𝑗)

and the fact that ∑𝑛𝑗
𝑖=1(𝑦𝑖𝑗 − ̄𝑦⋅𝑗) = 0, we obtain the lack–of–fit decomposition

𝑆𝑆res = 𝑆𝑆pe + 𝑆𝑆lof, 𝑆𝑆lof =
𝑘

∑
𝑗=1

𝑛𝑗( ̄𝑦⋅𝑗 − ̂𝜂𝑗)
2 ≥ 0.

As a result,

𝑀𝑆res = 𝑁 − 𝑘
𝑁 − 𝑝 𝑀𝑆pe + 𝑆𝑆lof

𝑁 − 𝑝.

Under the usual regularity conditions with a correctly specified mean model,

𝔼[𝑀𝑆pe] = 𝜎2, 𝔼[𝑀𝑆res] = 𝜎2,

so both are unbiased for 𝜎2 (but have different variances due to different dfs). When the parametric mean
is misspecified, 𝑆𝑆lof > 0 inflates 𝑀𝑆res.
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Lack–of–Fit Test

A standard lack–of–fit 𝐹 -statistic is
𝐹 = 𝑆𝑆lof/(𝑘 − 𝑝)

𝑆𝑆pe/(𝑁 − 𝑘) ,

which is approximately 𝐹𝑘−𝑝, 𝑁−𝑘 under the null that the parametric mean is correct (homoscedastic, inde-
pendent errors, replication at doses).

Worked Algebraic Example (Two Doses)

Consider two doses 𝑥1, 𝑥2 with 𝑛1, 𝑛2 ≥ 2 replicates and group means ̄𝑦⋅1, ̄𝑦⋅2, 𝑁 = 𝑛1 + 𝑛2.

For dose 𝑗,
𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̂𝜂𝑗)2 =
𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦⋅𝑗)2 + 𝑛𝑗( ̄𝑦⋅𝑗 − ̂𝜂𝑗)2.

Summing over 𝑗 = 1, 2 yields

𝑆𝑆res = 𝑆𝑆pe +
2

∑
𝑗=1

𝑛𝑗( ̄𝑦⋅𝑗 − ̂𝜂𝑗)2,

i.e., the same lack–of–fit decomposition.

Numerical Illustration

# Example data: two doses, three replicates each
y1 <- c(10, 12, 8) # dose x1
y2 <- c( 7, 9, 8) # dose x2

n1 <- length(y1); n2 <- length(y2)
N <- n1 + n2
k <- 2 # number of doses

ybar1 <- mean(y1)
ybar2 <- mean(y2)

# Pure error SS and MS
SS_pe <- sum( (y1 - ybar1)^2 ) + sum( (y2 - ybar2)^2 )
df_pe <- N - k
MS_pe <- SS_pe / df_pe

list(SS_pe = SS_pe, df_pe = df_pe, MS_pe = MS_pe)

## $SS_pe
## [1] 10
##
## $df_pe
## [1] 4
##
## $MS_pe
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## [1] 2.5

Case A: Saturated (ANOVA Treatment–Means) Model

eta1_sat <- ybar1
eta2_sat <- ybar2

SS_lof_sat <- n1*(ybar1 - eta1_sat)^2 + n2*(ybar2 - eta2_sat)^2
SS_res_sat <- SS_pe + SS_lof_sat

p_sat <- k # saturated model has one parameter per dose mean
df_res <- N - p_sat
MS_res_sat <- SS_res_sat / df_res

list(SS_lof = SS_lof_sat, SS_res = SS_res_sat, df_res = df_res, MS_res = MS_res_sat)

## $SS_lof
## [1] 0
##
## $SS_res
## [1] 10
##
## $df_res
## [1] 4
##
## $MS_res
## [1] 2.5

Case B: Constrained Model

eta1 <- 9.6
eta2 <- 8.4

SS_lof <- n1*(ybar1 - eta1)^2 + n2*(ybar2 - eta2)^2
SS_res <- SS_pe + SS_lof

p_constr <- 1
df_res <- N - p_constr
MS_res <- SS_res / df_res

list(SS_lof = SS_lof, SS_res = SS_res, df_res = df_res, MS_res = MS_res)

## $SS_lof
## [1] 0.96
##
## $SS_res
## [1] 10.96
##
## $df_res
## [1] 5
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##
## $MS_res
## [1] 2.192

Summary

• 𝑆𝑆res = 𝑆𝑆pe + 𝑆𝑆lof.

• 𝑀𝑆res = 𝑁−𝑘
𝑁−𝑝 𝑀𝑆pe + 𝑆𝑆lof

𝑁−𝑝 .

• Equality holds if the model passes through all group means (saturated).

67



References

Benchmark dose technical guidance. (2012). EPA/100/R-12/001. https://www.epa.gov/risk/benchmark-
dose-technical-guidance

Canadian Council of Ministers of the Environment (CCME). (2007). Canadian environmental quality guide-
lines. Canadian Council of Ministers of the Environment.

Crump, K. S. (1984). A new method for determining allowable daily intakes. Fundamental and Applied
Toxicology, 4(5), 854–871. https://doi.org/10.1016/0272-0590(84)90164-6

Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control.
Journal of the American Statistical Association, 50(272), 1096–1121. https://doi.org/10.1080/01621459.
1955.10501294

EFSA Scientific Committee. (2017). Update: Guidance on the use of the benchmark dose approach in risk
assessment. EFSA Journal, 15(1), 4658. https://doi.org/10.2903/j.efsa.2017.4658

EFSA Scientific Committee. (2022). Guidance on the use of the benchmark dose approach in risk assessment.
EFSA Journal, 20(10), e07584. https://doi.org/10.2903/j.efsa.2022.7584

European Chemicals Agency (ECHA). (2017). Guidance on information requirements and chemical safety
assessment: Chapter r.10 – characterisation of dose [concentration]–response for environment. Euro-
pean Chemicals Agency. https://echa.europa.eu/documents/10162/13632/information_requirements_
r10_en.pdf

Fisher, R., Barneche, D. R., Ricardo, G. F., & Fox, D. R. (2024). Bayesnec: An R package for concentration-
response modeling and estimation of toxicity metrics. Journal of Statistical Software, 110(5), 1–41.
https://doi.org/10.18637/jss.v110.i05

Fisher, R., & Fox, D. R. (2023a). Introducing the no-significant-effect concentration. Environmental Toxi-
cology and Chemistry, 42(9), 2019–2028. https://doi.org/10.1002/etc.5610

Fisher, R., & Fox, D. R. (2023b). Introducing the no‐significant‐effect concentration. Environmental Toxi-
cology and Chemistry, 42(9), 2019–2028. https://doi.org/10.1002/etc.5610

Fox, D. R. (2009). Is the EC𝑥 a legitimate surrogate for the NOEC? Integrated Environmental Assessment
and Management, 5(3), 351–353. https://doi.org/10.1897/IEAM_2008-043.1

Fox, D. R. (2010a). A bayesian approach for determining the no‐effect concentration and hazardous concen-
tration in ecotoxicology. Ecotoxicology and Environmental Safety, 73(2), 123–131. https://doi.org/10.
1016/j.ecoenv.2009.09.012

Fox, D. R. (2010b). Statistics and ecotoxicology: Shotgun marriage or enduring partnership? Integrated
Environmental Assessment and Management, 6(3), 501–502. https://doi.org/10.1002/ieam.158

Fox, D. R., Blasco, J., Campana, O., Hampel, M., & Chapman, P. M. (2016). Contemporary methods for
statistical design and analysis. In Marine ecotoxicology: Current knowledge and future issues (pp. 39–66).
Academic Press. https://doi.org/10.1016/B978-0-12-803371-5.00002-9

Fox, D. R., & Landis, W. (2016). Don’t be fooled — a no-observed-effect concentration is no substitute
for a poor concentration–response experiment. Environmental Toxicology and Chemistry, 1–8. https:
//doi.org/10.1002/etc.3459

Green, J. W., Springer, T. A., & Staveley, J. P. (2013). The drive to ban the NOEC/LOEC in favor of ECx)
is misguided and misinformed. Integrated Environmental Assessment and Management, 9(1), 12–16.
https://doi.org/10.1002/ieam.1367

Guidance document on the use of the benchmark dose approach in risk assessment (OECD Series on Testing

68

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://doi.org/10.1016/0272-0590(84)90164-6
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.2903/j.efsa.2017.4658
https://doi.org/10.2903/j.efsa.2022.7584
https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.pdf
https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.pdf
https://doi.org/10.18637/jss.v110.i05
https://doi.org/10.1002/etc.5610
https://doi.org/10.1002/etc.5610
https://doi.org/10.1897/IEAM_2008-043.1
https://doi.org/10.1016/j.ecoenv.2009.09.012
https://doi.org/10.1016/j.ecoenv.2009.09.012
https://doi.org/10.1002/ieam.158
https://doi.org/10.1016/B978-0-12-803371-5.00002-9
https://doi.org/10.1002/etc.3459
https://doi.org/10.1002/etc.3459
https://doi.org/10.1002/ieam.1367


and Assessment, No. 329). (2020). OECD. https://doi.org/10.1787/9153016e-en
Hendriks, A. J., Awkerman, J. A., Zwart, D. de, & Huijbregts, M. A. J. (2013). Sensitivity of species to

chemicals: Dose–response characteristics for various test types (LC50, LR50 and LD50) and modes of
action. Ecotoxicology and Environmental Safety, 97, 10–16. https://doi.org/10.1016/j.ecoenv.2013.06.020

Jager, T. (2012). Bad habits die hard: The NOEC’s persistence reflects poorly on ecotoxicology. Environ-
mental Toxicology and Chemistry, 31(2), 228–229. https://doi.org/10.1002/etc.746

Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives. Biometrika, 41(1/2),
133–145. https://doi.org/10.2307/2333011

Lakens, D. (2017). Equivalence tests: A practical primer for t-tests, correlations, and meta-analyses. Social
Psychological and Personality Science, 8(4), 355–362.

Mount, D. I., & Stephan, C. E. (1967). A method for establishing acceptable toxicant limits for fish–
malathion and the butoxyethanol ester of 2,4-d. Transactions of the American Fisheries Society, 96(2),
185–193. https://doi.org/10.1577/1548-8659(1967)96%5B185:AMFEAT%5D2.0.CO;2

National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. (2023).
Manual for the PROASTweb application, version 70.1. PROAST web application manual. https://
proastweb.rivm.nl/

Ritz, C. (2010). Toward a unified approach to dose–response modeling in ecotoxicology. Environmental
Toxicology and Chemistry, 29(1), 220–229. https://doi.org/10.1002/etc.7

Sánchez-Bayo, F., & Goka, K. (2007). Simplified models to analyse time- and dose-dependent responses of
populations to toxicants. Ecotoxicology, 16(7), 511–523. https://doi.org/10.1007/s10646-007-0158-9

Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for
assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics,
15(6), 657–680.

Slob, W. (2002). Dose–response modeling of continuous endpoints. Toxicological Sciences, 66(2), 298–312.
https://doi.org/10.1093/toxsci/66.2.298

Terpstra, T. J. (1952). The asymptotic normality and consistency of kendall’s test against trend, when ties
are present in one ranking. Indagationes Mathematicae, 14, 327–333.

U.S. Environmental Protection Agency. (2012). Benchmark dose technical guidance (EPA/100/R-12/001).
U.S. EPA Risk Assessment Forum. https://www.epa.gov/risk/benchmark-dose-technical-guidance

Warne, M. S. J., Batley, G. E., Braga, O., Chapman, J. C., Fox, D. R., Hickey, C. W., Stauber, J. L.,
& Van Dam, R. A. (2018). Revisions to the derivation of the australian and new zealand guidelines
for toxicants in fresh and marine waters. Environmental Toxicology and Chemistry, 37(3), 622–637.
https://doi.org/10.1002/etc.3996

Warne, M. St. J., Batley, G. E., Dam, R. A. van, Chapman, J. C., Fox, D. R., Hickey, C. W., Stauber, J.
L., & Fisher, R. (2025). Method for deriving australian and new zealand water quality guideline values
for protecting aquatic ecosystems from toxicants – update of 2018 version [Technical Report].

Williams, D. A. (1971). A test for differences between treatment means when several dose levels are compared
with a zero dose control. Biometrics, 27(1), 103–117. https://doi.org/10.2307/2528930

69

https://doi.org/10.1787/9153016e-en
https://doi.org/10.1016/j.ecoenv.2013.06.020
https://doi.org/10.1002/etc.746
https://doi.org/10.2307/2333011
https://doi.org/10.1577/1548-8659(1967)96%5B185:AMFEAT%5D2.0.CO;2
https://proastweb.rivm.nl/
https://proastweb.rivm.nl/
https://doi.org/10.1002/etc.7
https://doi.org/10.1007/s10646-007-0158-9
https://doi.org/10.1093/toxsci/66.2.298
https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://doi.org/10.1002/etc.3996
https://doi.org/10.2307/2528930

	Introduction
	Common toxicity metrics used in ecotoxicology
	Categorical versus Ratio metrics
	Formal Definitions
	Limitations of Traditional Metrics

	Jurisdictional Preferences
	Australia and New Zealand
	Canada
	United States
	European Union
	Historical and Regulatory Context
	Summary

	Similarities and Differences between toxicity metrics
	BMD versus ECx
	BMDL/ECx versus NSEC
	Reconciling R-type and C-type toxicity metrics
	The ANOVA framework
	The R-type framework
	Discussion: Implications for Dunnett's Test
	Power and threshold implications
	Example


	Equivalence Testing - Introducing the Equivalent Effects Concentration (EEC)
	Overview of Equivalence Testing
	Defining the EEC
	Positioning the EEC Among Other Metrics
	Common toxicity Metrics as Variants of the Equivalent Effects Concentration (EEC)
	EC_x and BMD as Deterministic EECs
	BMDL as a Confidence‑Bounded EEC
	NSEC as an Absolute‑Change EEC
	NOEC as a Discrete‑Dose Approximation of the EEC
	NEC as the Zero‑Margin EEC
	Summary
	Implications

	Strengths and weakenesses of the EEC

	Worked Example in R
	Graphical Comparison of metrics
	Explanation of R code (see \S6.1.11 below)
	EEC Type Selection
	Load Data and Fit Model
	Predicted Values and Root-Finding Helpers
	Basic Quantities
	NSEC Calculation
	BMDL Calculation
	EEC Calculation
	Results Table
	Plotting
	R Code for comparing metrics

	Comparison with USEPA BMDP Program
	Hill Model (as in USEPA BMD)
	Four parameter Log-logistic Model (LL.4) as in drc
	Standard errors of Hill Model parameter estimates

	Example

	Appendix 1: Proof of Equivalence Between TOST and Confidence Interval Inclusion Criterion
	Appendix 2: Power for the One-sided Dunnett's Test
	Setup and Notation
	Test Statistic
	Null Distribution
	Critical Value
	Power Function
	Per-Comparison vs Familywise Power
	Sample-Size Targeting (Any-Pair Power)
	Bottom Line
	Appendix 3: Computation of BMDL using profile likelihood
	Model and target level
	Example
	R code for finding BMDL by profile likelihood
	Appendix 4: USEPA BMDP output for Worked Example
	Appendix 5: Comparing error estimates from categorical and continuous dose-response modelling
	Setup
	Sums of squares and mean squares
	Consequences
	With replication at each dose
	Equality conditions (numerical equality vs expectation)
	Clarification


	MSE comparison
	Notation and setup
	Sums of Squares and Mean Squares
	Pure Error (within–dose)
	Model Residual and Lack–of–Fit
	Lack–of–Fit Test


	Worked Algebraic Example (Two Doses)
	Numerical Illustration
	Case A: Saturated (ANOVA Treatment–Means) Model
	Case B: Constrained Model

	Summary
	References

